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Summary 
This project aimed to provide information on the scientific validity and the general applicability 
of the Petrotox and Hydrocarbon Block Method tools as developed by CONCAWE for 
predicting the environmental hazards, exposure and subsequently the environmental risks 
associated with petroleum hydrocarbons in the context of REACH registrations. The tools are 
intended to be applicable to any (petroleum) hydrocarbon substance. RIVM was asked by the 
European Chemicals Agency to review the validity and implementation of the underlying 
theories and the validity and quality of the QSAR models used to estimate effect and exposure 
properties of all representative hydrocarbon structures (the so-called CONCAWE library) used to 
establish reference hydrocarbon blocks. 

CONCAWE Library of model substances and QSARs  
In general it can be stated that almost all the obvious classes of hydrocarbon structures, present in 
hydrocarbon products, are also present in the library of substances used by CONCAWE for the 
read across of toxicological and physico-chemical properties to the hydrocarbon blocks. One 
concern is the absence of O(xygen) and N(itrogen) containing petroleum substances in the library 
of model substances. A substantial part of the substance library (5.9%) are S(ulfur) containing 
substances, but nitrogen and oxygen containing petroleum components are absent. This implies 
that for petroleum product containing O/N containing petroleum substances the CONCAWE 
models are not suitable.  

To generate the physico-chemical properties of the library substances for which no experimental 
data is available, both the PetroTox and HBM tool use several QSAR models. Unfortunately, 
these two tools apply different QSAR models in generating these properties. Although the 
performance of the QSAR models applied both in PetroTox and the HBM tool seems to be 
sufficient, when these QSAR predictions are compared to available experimental data, the 
different models do show large differences for the estimations of the same physico-chemical 
properties for hydrocarbon substances. The use of the same QSAR model for estimating a 
property in the hazard as well as the environmental fate assessment would be logical, desirable 
and advisable. As octanol-water partitioning (Kow) is the basis for the toxicity QSARs (Target 
Lipid Model), the use of the SPARC QSAR model for predicting Kow seems to be required and 
defensible in the PetroTox model. There is no such requirement for the use of the KOWWIN 
model for estimating Kow in the HBM tool. A comparison between log Kow predictions from 
SPARC and KOWWIN reveals large differences between these models, adding to the uncertainty 
in the risk characterization. The same can be said for other physico-chemical properties. In 
conclusion, we realize that there is no absolute best model, nevertheless we propose to use one 
model for all relevant physico-chemical properties to avoid inconsistencies.  

In estimating the fate of hydrocarbon products in the environment, the HBM tool applies the 
BIOHCWIN model, developed to estimate the half lives in surface water. This model seems to 
underestimate the degradation half lives of short chain alkanes and branched alkanes, although, 
for for other compounds the model seems to be sufficiently conservative. The factors used to 
extrapolate half lives to soil and sediment are not well founded and based on a proposed ratio 
from a study of Boethling et al. (1995) in which only a few petroleum compounds are present. 
Using a conservative approach, the ratios proposed in the REACH guidance to extrapolate half 
lives from water to soil and sediment, based on the ready biodegradability test, are 
recommended. Most critical is the equation used to estimate the half lives in an STP based on the 
estimated half lives in surface water with BIOHCWIN. More experimental data are needed for 
several classes of petroleum components to have a broader coverage of the petroleum 
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compounds and to gain more confidence in the validity of the calculation method. At present 
there is a possibility that the fraction degraded in an STP will be overestimated and consequently 
the environmental concentrations predicted may be too low. 

Based on our analysis of the BCF model values used in the HBM tool it can be concluded that by 
using (the outdated) BCFWin v2.16 estimates for the BCF in the HBM tool bioconcentration will 
be underestimated. We recommend using a more up to date estimate (e.g BCFBAF v3.00 model 
estimates, or following the REACH guidance recommendations for calculation of BCF based on 
Kow). 

Target Lipid Model 
Based on the available data the assumptions and formulas used by PETROTOX to predict 
toxicity with LL50 and toxic units (TU) are considered scientifically valid for use in the 
classification of petroleum mixtures.  
A number of weaknesses were identified in the target lipid model with respect to  
a)  the assumption of the normal distribution of the log CTLBB and log ACR,   
b) the assumption of independence of parameters, which was not met for the combination of 

CTLBB and the universal slope for narcosis, and  
c)  the numerical values used for the ACR, including the use of chronic values instead of 
NOECs. Consequently, the PNEC estimation is considered too optimistic by a factor of 3 to 7 in 
general, which warrants the adjustment of the model and/or the application of an additional 
assessment factor.  
 
Overall conclusion 
In view of the shortcomings identified with respect to the assumptions made in the HBM and 
Petrotox we recommend improving both models. In the current stage we believe there is a serious 
possibility that the tool PETRORISK, which integrates both models, will lead to an 
underestimation of the (environmental) risk related to the production and use of petroleum 
products.  
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Abbreviations 
ACR  Acute-to-Chronic Ratio 
AF  Assessment Factor 
BABs  Branched Alkyl Benzenes 
BAF  BioAccumulation Factor 
BATs  Branched Alkyl Tetralins 
BINs  Branched Indanes and Indenes 
BCF  BioConcentration Factor 
BMF  BioMagnification Factor 
BP   Boiling Point 
BTEX  Benzene, Toluene, Ethylbenzene, and Xylene 
ChV  Chronic Value, geometric mean value of the NOEC and LOEC. 
CONCAWE CONservation of Clean Air and Water in Europe, the oil companies' European 

association for environment, health and safety in refining and distribution. 
CTLBB  Critical Target Lipid Body Burden 
CTPHT  Coal Tar Pitch High Temperature 
C&L  Classification and Labelling 
DBT  DiBenzoThiophene 
ECHA  European CHemicals Agency 
EC10  Effect Concentration causing 10% effect 
EC50  Effect Concentration causing 50% effect 
ELS  Early Life Stage 
EP  Equilibrium Partitioning 
EUSES  European Union System for the Evaluation of Substances  
EU RAR European Union Risk Assessment Report 
FAV  Final Acute Value 
FCV  Final Chronic Value 
GC/MS  Gas Chromatography / Mass Spectrometry 
GCxGC  two-dimensional Gas Chromatography 
GIT   GastroIntestinal Tract 
GMAV  Genus Mean Acute Value 
HBM  Hydrocarbon Block Method 
HC5  Hazardous Concentration affecting 5% of the species 
HLC  Henry’s Law Constant (Air-Water partition coefficient) 
HOM  Humic Organic Matter 
HPC   Hydrocarbon Petroleum Compound 
IR  Infra Red 
 (log) Kbc (10-base logarithm of the) Black Carbon / water partition coefficient 
(log) Kmw (10-base logarithm of the) Membrane (or Micelle) / Water partition coeff. 
(log) Koa (10-base logarithm of the) Octanol / Air partition coefficient 
(log) Koc (10-base logarithm of the) Organic Carbon / water partition coefficient 
(log) Kow (10-base logarithm of the) Octanol / Water partition coefficient 
LABs  Long-chain Alkyl Benzenes 
LC50  Lethal Concetration causing 50% lethality 
LL50  Lethal Loading 50% 
LOEC  Lowest Observed Effect Concentration 
MATC  Maximum Acceptable Toxicant Concentration 
MP  Melting Point 
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NMR  Nuclear Magnetic Resonance 
NOEC  No-Observed Effect Concentration 
NO3  Nitrate 
OC  Organic Carbon 
OH  Hydroxyl 
PAH  PolyAromatic Hydrocarbons 
PBT  Persistent, Bioaccumulative and Toxic 
PEC  Predicted Environmental Concentration 
PNEC  Predicted No-Effect Concentration 
QSAR  Quantitative Structure-Activity Relationship 
QSPR  Quantitative Structure-Property Relationship 
RCR  Risk Coefficient Ratio (PEC/PNEC ratio) 
REACH  Registration, Evaluation, Authorization and restriction of CHemicals 
RIVM  Dutch National Institute for Public Health and the Environment 
s.e.  standard error 
SSD  Species-Sensitivity Distribution 
STP  Sewage Treatment Plant 
TGD  Technical Guidance Document 
TLM  Target Lipid Model 
TU  Toxic Units 
USEPA  United States Environmental Protection Agency 
UV  Ultra Violet 
VP  Vapour Pressure 
WAF  Water Accomodated Fraction 
WS  Water Solubility 
 
 
 
PetroTOX / PetroRISK classes of hydrocarbons 
 
AlS  sulphur bearing aliphatics compounds 
ArS   sulfur bearing aromatic structures 
DiAr  diaromatic structures 
di-N   di-naphthenic structures 
i-N  other naphtenics   
i-olefins branched olefinic structures  
i-P  linear alkanes: iso-parrafins  
MoAr   parent and substituted Mono Aromatics 
NDiAr   naphthenic diaromatic structures 
NmAr   naphthenic mono Aromatic structures 
n-CC5  parent and substituted cyclopentanes  
n-CC6  parent and substituted cyclohexanes  
n-olefins   linear olefinic structures 
n-P  linear alkanes: n-paraffins   
PolyAr   polyaromatic structures 
PolyN   poly naphthenics 
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QSAR Models and Software 
 
AOP or AOPWIN™: QSAR model to estimates the gas-phase reaction rate for the 

reaction between the most prevalent atmospheric oxidant, hydroxyl radicals, and a 
chemical. Gas-phase ozone radical reaction rates are also estimated for olefins and 
acetylenes.  Part of USEPA EPISuite 

BCFBAF The BCFBAF Program is an update and expansion of the previous BCFWIN 
Program. It has been expanded to include estimation of the Biotransformation Rate 
(kM) in fish and estimation of Bioaccumulation Factor (BAF) by the Arnot-Gobas 
method. 

BCFWin QSAR model to calculate the bioconcentration factor from log Kow. Part of USEPA 
EPISuite 

BIOHCWIN QSAR models to estimate biodegradation half-life for compounds containing only 
carbon and hydrogen (i.e. hydrocarbons). Part of USEPA EPISuite. 

ClogP  QSAR model to calculate log P, which is equal to log Kow 
EPISuite The EPI (Estimation Programs Interface) Suite™ is a Windows® based suite of 

physical/chemical property and environmental fate estimation models developed by 
the EPA’s Office of Pollution Prevention Toxics and Syracuse Research Corporation 
(SRC). 

ETX A Program to Calculate Hazardous Concentrations and Fraction Affected, Based on 
Normally Distributed Toxicity Data. RIVM Report no. 601501028. 

HenryWIN QSAR model to Calculate the Henry’s Law constant (air/water partition coefficient) 
using two different methods (group and/or bond contribution). Part of USEPA 
EPISuite. 

KOWWIN QSAR model for log Kow calculation. Part of USEPA EPISuite 
MPBPVP or MPBPWIN™: QSAR models for melting point, boiling point, and vapor pressure 

of organic chemicals. Part of USEPA EPISuite. 
SPARC Sparc Performs Automated Reasoning in Chemistry - a predictive modeling system, 

which calculates a large number of physical/ chemical parameters from molecular 
structure and basic environmental information (media, temperature, pressure, pH, 
etc.).  

SimpleTreat Fate model to predict the distribution and elimination of chemicals by sewage 
treatment plants. RIVM report no. 719101025/1996 

STPWin Fate model which predicts the percent of a compound that will be removed from 
wastewater. Part of USEPA EPISuite. 

WSKOW or WSKOWWIN™: QSAR model to estimate an octanol-water partition coefficient 
using the algorithms in the KOWWIN™ program and estimates a chemical’s water 
solubility from this value. Part of USEPA EPISuite. 

WATERNT QSAR model to estimate water solubility directly using a "fragment constant" 
method similar to that used in the KOWWIN™ model. Part of USEPA EPISuite. 
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1 Introduction 

1.1 Objective 

Commissioned by the European Chemicals Agency a critical review has been performed on the 
environmental and physicochemical methodologies employed in the PetroTox and HBM tools 
developed by CONCAWE to perform hazard and environmental risk assessment for petroleum 
substances in the context of REACH registrations.  

The main objective of the project is to provide information on the scientific validity and the 
general applicability of the models currently available for predicting the environmental hazards, 
environmental exposure and subsequently the environmental risks (including risk to humans 
indirectly exposed via the environment) associated with petroleum hydrocarbons in the context 
of REACH registrations. Towards this end the hydrocarbon block method approach as 
implemented by CONCAWE in their PetroTOX and HBM [Van de Meent, 2008] tool and any 
QSPR/QSAR models used therein are to be investigated. 

1.2 Method 

This project was subdivided into three work packages. Based on the available data and internal 
knowledge on the fate and behaviour of petroleum substances we have assessed the scientific 
validity of the calculated physicochemical and environmental fate parameters within the models 
PETROTOX and HBM, in work package 1. 

In the second work package, the available data were used to determine the scientific validity of 
the assumptions and formulas used in PETROTOX to predict toxicity, with LL50, toxic units 
(TU) and HC5 being of particular interest in this respect. The available ecotoxicity data and SAR 
evidence were used to determine the possible mode(s) of action of petroleum hydrocarbons in 
aquatic and terrestrial species.  

Based on the scientific validation, the PETROTOX and HBM tools were evaluated for their 
efficacy in the prediction of hazards, exposures and risks for petroleum hydrocarbons and related 
substances. The final aim of this evaluation was to determine whether the quality of the data 
underlying the models  and the accuracy (in terms of uncertainty of the predictions compared to 
uncertainty in the experimental values) in the predictions of these models is sufficient to predict 
environmental hazard, environmental exposure and environmental risk for a given hydrocarbon 
petroleum substance. This was dealt with in the third work package. Based on the short-comings 
detected, recommendations are given on how these models can be adapted to enhance their 
acceptance. 
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2 Materials and Methods  

2.1 Work Package 1: CONCAWE library and Fate QSARs  

2.1.1 Objectives 
To obtain information on the scientific validity of the CONCAWE library of models for  assessing the 
environmental risks of petroleum hydrocarbon components and any related QSPR/QSAR calculated 
properties used by the PETROTOX and HBM models. The overall aim of this work package is to 
determine the amount of the high quality data present in the CONCAWE library and hence provide 
detail on the accuracy and quality consistency within the hydrocarbon block as used by the 
PETROTOX and HBM models to predict hazard, exposure and risk for a given petroleum substance.   

2.1.2 Approach 
The CONCAWE library consists of a large number of unique hydrocarbon structures and their 
associated physicochemical properties. We have evaluated whether this library sufficiently covers the 
range and variety of true petroleum hydrocarbons components so that accurate fate and hazard 
profiles are obtained. For this purpose, we have investigated which sources were used to build the 
library and how well these sources reflect the composition of products that are available on the 
market. This information has been obtained by evaluating compositional information from different 
products, crude oil and/or field samples from a variety of sources.  

For each library component a number of physicochemical properties are provided as calculated by 
SPARC (in PetroTOX) or experimental data are used supplied with EpiSuite QSAR model estimates 
(in the HBM tool). SPARC is a suite of thermodynamically based QSAR models for physico-
chemical properties of organic substances, developed by the University of Georgia through grants 
from USEPA. EpiSuite is a suite of more classical QSAR models for physico-chemical properties of 
organic substances. EpiSuite models mostly use substructure fragments as descriptors, and were 
developed by SRC Inc. in close cooperation with and through grants from the USEPA. 

 In order to evaluate the applicability of SPARC and EpiSuite QSAR models to calculate the melting 
point, boiling point, vapour pressure and water solubility of petroleum hydrocarbon substances 
properties, experimental data have been compiled by RIVM and summarized in the report. The 
experimental data have been obtained from earlier project on environmental risk limits for total 
petroleum hydrocarbons [Verbruggen et al., 2008] and the European risk assessment on coal tar pitch 
high temperature [EU, 2008]. In the tender vapour pressure was explicitly mentioned as one of the 
(four) physico-chemical parameters to be evaluated. However, both in PetroTox as well as in the 
HBM tool vapour pressure is not used, and no data (experimental or estimated) for vapour pressure is 
present in the substance libraries provided with these two tools. Instead the Henry’s Law Constant 
(water-air partitioning coefficient) has been evaluated, as this parameter is used both in PetroTOX 
and the HBM tool to estimate the partitioning over the aqueous and atmospheric/head-space 
compartments. 

The accuracy of the calculated properties within the CONCAWE library has been determined by 
comparison of the available experimental data with those calculated by SPARC. In addition, a 
comparison is made with other QSAR programs, to assess the uncertainty and any structural 
deviations of the data obtained with SPARC.  



 

 
11 

In order to assess the validity of calculated environmental fate parameters within PETROTOX and 
HBM such as log Kow, log Kaw, log Koa, log Kmw, BCF values in fish and biodegradation half lives, the 
methods used have been evaluated based on the underlying data and by comparison with 
experimental data. In addition, other available QSPR/QSAR models were compiled and compared to 
those used in PETROTOX and HBM. Special attention was paid to the assumption made for 
unbranched and branched aliphatic and alkylated aromatic hydrocarbons with respect to their 
degradability and metabolism in fish. For substances with a log Kow > 5, which are not metabolized, 
uptake from environmental sources other than water (e.g food and sediment) might contribute to the 
bioaccumulation in higher organism. This assumption has been critically evaluated. It has also been 
assessed whether the Koa should be included in the estimation biomagnification potential in air-
breathing species. 

The outcome of the analyses is presented in section 3.1. The details of all the data used in the analyses 
are presented in Annex I. 

2.2 Work Package 2: Target Lipid Model 

2.2.1 Objectives 
To obtain information on the validity of the Target Lipid Model and its applicability to petroleum 
hydrocarbon components.   

2.2.2 Approach 
In order to determine the scientific validity of the terms, assumption and formulas in PETROTOX to 
predict ecotoxicity, LL50, toxic units (TU) and HC5, in section 3.2 the underlying data are analysed 
and compared with the available data obtained from in-house projects and the literature review.  

The core of the target lipid model, on which PETROTOX is based, are QSARs for acute toxicity. One 
of the crucial elements in PETROTOX is the application of an estimated acute-to-chronic ratio (ACR) 
for a broad range of petroleum hydrocarbons. This method was critically reviewed in respect to the 
underlying data used to derive the ACR, taking into consideration structural differences and 
differences in mode of action as well as differences between species. The justification in terms of 
uncertainty towards all the different petroleum hydrocarbons was further assessed by comparison 
with ACRs found in additional data sources for hydrocarbon petroleum compounds and related 
substances.  

It can be assumed that ecotoxicity of a large number of hydrocarbon petroleum components is mainly 
caused by narcosis or baseline toxicity. On the other hand phototoxicity is also observed for different 
petroleum mixtures, which might be due to the presence of PAHs which are known to exert an 
enhanced toxicity due to this mode of action. It was also investigated whether the toxic unit concept, 
as the basis for the derivation of the ecotoxicity of a mixture of Hydrocarbon Petroleum Compounds 
(HPCs), it is also applicable to components which act via another mode of action, like PAHs, for 
which the highest toxicity is based on phototoxicity  

It will further be determined to which extent possible acute and chronic toxic effects of hydrocarbons 
on sediment and terrestrial organisms are accounted for in the PETROTOX model.  
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2.3 Work Package 3: Evaluation of Uncertainties  

2.3.1 Objectives 
To investigate some specific uncertainties related to the methodologies applied using the 
hydrocarbon Block Method approach to environmental hazard, environmental exposure and 
environmental risk assessment of petroleum hydrocarbon substances.  

2.3.2 Approach 
Based on the results obtained in work package 1 and 2 on the representativeness of the CONCAWE 
library of model compounds for different petroleum streams, the accuracy of the calculated fate and 
behaviour properties of the HPCs and the derivation of PNECs, in section 3.3 it will be investigated to 
which extent the use of HBM and PETROTOX could under- or overestimate the environmental risk 
of  release of HPCs in the environment. Based on the shortcomings detected, recommendations are 
given on how these models can be adapted to minimize uncertainties in the risk assessment outcome. 
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3 Results  

3.1 WP1. CONCAWE library and Fate QSARs  

3.1.1 Composition of petroleum products   
All petroleum products are derived from crude oil whose major constituents are hydrocarbons. 
These hydrocarbons can be saturated, unsaturated, linear, branched, cyclic, polycyclic, and can 
be heterogeneous with major hetero-atoms: oxygen, nitrogen and sulphur. Petroleum contains 
many thousands of different compounds that vary in molecular weight from 16 (methane) to 
more than 2000. This broad range in molecular weights results in boiling points that range from –
160 ºC to temperatures in excess of 1000°C (see Table 1). Crude oil is rarely used in its raw form 
but must instead be processed into its various products, generally as a means of forming products 
with a hydrogen content different from that of the original feedstock. 

As shown in Figure 2, each of these refineries has its own range of preferred petroleum feedstock 
from which a desired distribution of products is obtained. In general, refinery processes can be 
divided into three major types: 

1. Separation: division of petroleum into various streams (or fractions) depending on the 
nature of the crude material. 

2. Conversion: production of salable materials from petroleum, usually by skeletal 
alteration, or even by alteration of the chemical type, of the petroleum constituents. 

3. Finishing: purification of various product streams by a variety of processes that 
essentially remove impurities from the product; for convenience, processes that 
accomplish molecular alteration, such as reforming, are also included in this category. 

Table 1.  General summary of the carbon number and boiling point of PHC product types (from Speight, 2002) 

Product Lower carbon 
limit 

Upper carbon 
limit 

Lower boiling 
point (°C) 

Upper boiling 
point (°C) 

Refinery gas C1 C4 -161 -1 

Liquefied petroleum gas C3 C4 -42 -1 

Naphtha C5 C17 36 302 

Gasoline C4 C12 -1 216 

Kerosine/diesel fuel C8 C18 126 258 

Aviation turbine fuel C8 C16 126 287 

Fuel oil C12 >C20 216 421 

Lubricating oil  >C20  >343  

Wax C17 >C20 302 >343 

Asphalt >C20  >343  

Coke >C50  >1000  
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The separation and finishing processes may involve distillation or even treatment with a wash 
solution, either to remove impurities or, in the case of distillation, to produce a material boiling 
over a more narrow range, and the chemistry of these processes is quite simple. Conversion 
processes are, in essence, processes that change the number of carbon atoms per molecule, alter 
the molecular hydrogen-to-carbon ratio, or change the molecular structure of the material without 
affecting the number of carbon atoms per molecule (Figure 1).These latter processes 
(isomerization processes) essentially change the shape of the molecule(s) and are used to 
improve the quality of the product (Speight, 2002 and references cited therein). Table 1 gives an 
overview of the products types and boiling points ranges.  

Petroleum components can be separated into four fractions, the saturated, aromatic, resin and 
asphaltene fractions, by absorption chromatography. Each of these fractions contains a large 
number of compounds, examples are given in Figure 1 [Speight, 1999]. Saturates are 
hydrocarbons containing no double bonds. They are further classified according to their chemical 
structures into alkanes (paraffins) and cycloalkanes (naphthenes). Alkanes have either a branched 
or unbranched (normal) carbon chain(s), and have the general formula CnH2n+2.  

 

Figure 1. Representative Hydrocarbons 
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Figure 2. Schematic of a petroleum refinery (from Speight, 1999) 

 

Alkanes 

In crude oil and several refined petroleum products the n-alkanes and branched alkanes form the 
major components (see Table 2). Crude oil can contain n-alkanes from C1 to C40 in size, with the 
most abundant n-alkanes typically being n-pentane to n-dodecane. Numerous branched-chain 
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alkanes up to C10 have been identified in crude oil. Branched C6- to C8-alkanes commonly are 
found in the greatest abundance in this structural group [Jensen, 1994]. This group also includes 
the isoprenoids, which are isoalkanes with a single methyl branch on every fourth carbon atom. 
The isoprenoids found in the greatest amounts in crude oil are pristane (C19) and phytane (C20). 

Alkenes 

Although alkenes are not commonly found in crude oil, they are more common in refined 
petroleum products.  

Cycloalkanes 

Cycloalkanes have one or more rings of carbon atoms (mainly cyclopentanes and cyclohexanes), 
and have the general formula CnH2n. The majority of cycloalkanes in crude oil and refined 
petroleum products have an alkyl substituent(s). The cycloalkanes are present in high 
concentrations in crude oil and several refined petroleum products (see Table 2), but they also are 
the least well characterized because of analytical difficulties. They can be either single, fused, or 
linked by a single carbon–carbon bond; contain aromatic rings; and/or have alkyl substituents, 
either branched or linear. Cyclopentane and cyclohexane derivatives tend to be the main 
cycloalkanes in petroleum products. Mono- and dicycloalkanes compose 50 to 55% of the 
cycloalkanes with more than 10 carbon atoms; heavier members of this group typically are found 
with one long alkyl chain (linear or slightly branched) and several methyl or ethyl groups [Potter 
& Simmons, 1998; Howard et al., 2005 and references therein].  

Aromatics 

Aromatics have one or more aromatic rings with or without an alkyl substituent(s). Benzene is 
the simplest one, but alkyl-substituted aromatics generally exceed the non-substituted types in 
crude oil [Potter & Simmons, 1998]. Alkylated benzenes found at the highest concentration in 
petroleum are those with one or two methyl or ethyl groups, although other mono- and 
dialkylbenzenes with chains from 12 to 40 carbon atoms in length have been identified [Potter & 
Simmons, 1998;  Howard et al., 2005 and references therein]. 

Resins and asphaltenes 

In contrast to the saturated and aromatic fractions, both the resin and asphaltene fractions contain 
non-hydrocarbon polar compounds. Their elements contain, in addition to carbon and hydrogen, 
trace amounts of nitrogen, sulfur and/or oxygen. Typically, of the S-containing heterocyclics, 
dibenzothiophene and its alkylated derivatives are found in the greatest abundance in crude oil 
[American Petroleum Institute, 1994]. 

Asphaltenes consist of high-molecular weight compounds which are not soluble in a solvent such 
as n-heptane, while resins are n-heptane-soluble polar molecules. Resins contain heterocyclic 
compounds, acids and sulfoxides. 

Analysis of an unresolved complex mixture from crude oil and petroleum products in the 
environment (biota and abiotic media) can identify several branched alkylbenzenes (BABs), 
tetralins (BATs), and indanes and indenes (BINs), cyclic and aromatic sulfoxide compounds and 
benzothiophenes. In addition, residues of acyclic isoprenoids such as farnesane, norpristane, 
pristane, and phytane are identified. The presence of these compounds is mostly likely due to 
their persistence against biodegradation [Rowland et al., 2001; Booth et al., 2007; Frenzel et al, 
2009, 2010; Melbye et al., 2009]. 
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Table 2.  Overview of the carbon number, composition and end use of several petroleum fuel mixtures [from 
Potter & Simmons, 1998] 

Petroleum 
fuel mixtures 

Alkane 
carbon nr. 
range 

Compound classes End use 

gasoline n-C4 – C12 High conc. BTEX, monoaromatics 
and branched alkanes 
Lower conc. n-alkanes, cycloalkanes 
and naphthalenes 
Very low conc. PAHs 

Automotive spark-
ignition engine 

kerosene n-C7 – C21 High conc. cycloalkanes and n-
alkanes 
Lower conc. monoaromatics and 
branched alkanes  
Very low conc. BTEX and PAHs  

Critical kerosene burners 

JP-4, fuel n-C5 – C18 High conc. cycloalkanes,  n-alkanes, 
branched alkanes,  
Low conc. n-alkanes,  BTEX and 
monoaromatics  
Very low conc. PAHs  

Aviation turbine engines 

Diesel n-C8 – C21 High conc. n-alkanes and 
cycloalkanes  
Lower conc. branched alkanes, 
monoaromatics ,  naphthalenes and 
PAHs  
Very low conc. of BTEXs 

High speed engines 
Domestic burners 
Medium capacity 
commercial industrial 
burners 

No 6 fuel oil n-C12 – C34 High conc. n-alkanes and 
cycloalkanes  
Lower conc. naphthalenes and PAHs,  
Very low conc. BTEXs 

Commercial burners 
Industrial burners 

Lubricating 
and motor 
oils 

n-C18 – C34 High conc. branched alkanes and 
cycloalkanes 
Very low conc. BTEXs and PAHs 

Internal combustion 
engines 

Crude oil n-C1 – C34 High conc. n-alkanes , branched 
alkanes and cycloalkanes  
Lower conc. BTEXs, PAHs and 
naphthalenes  
Variable conc. of sulfur heterocyclics  

 

 
Analysis of heavy fraction in crude oil 
The components of petroleum in crude oil are analyzed mainly by using gas chromatography in 
combination with mass spectrometry (GC/MS). Consequently, the chemical structures of the 
higher molecular-weight components (the heavy fractions) that cannot be identified by GC are 
mostly unknown. Furthermore, the compositions of many branched alkanes and alkyl cyclo-
alkanes have not been determined because their isomers are numerous and cannot be resolved by 
GC [Killops and Al-Juboori, 1990; Gough and Rowland, 1990]. Therefore, a multitude of 
analytical techniques such as flame ionization detection, IR- and UV-absorption spectrometry, 
NMR and elemental analysis in combination with appropriate separation techniques such as 
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various chromatographic methods and/or chemical conversion is necessary to characterize 
petroleum, and especially its heavy fractions. 
In the CONCAWE library these fraction are not included and consequently these fraction are not 
taken into account in the risk assessment. We however assumed that this fraction is of less 
relevance for the overall risk of petroleum compounds.  
 

3.1.2 Contents of the CONCAWE library 
The CONCAWE library which is used to select representative substances for each hydrocarbon 
block both in the PETROTOX model as well as the Hydrocarbon Block Method by van de Meent 
[2008] consists of 1512 single hydrocarbon structures in the case of PETROTOX v3.05, and 1518 
single hydrocarbon structures in the case of the HBM model (version 15-07-2008). From personal 
communication with CONCAWE it was understood that the library has been built using 
hypothetical structures in an attempt to fill the foreseen maximum number of Hydrocarbon Blocks 
as well as possible within a practical approach. The matrix reflects the characterization which is 
currently possible using GCxGC analysis. This task was outsourced to Syracuse Inc. (Ph.Howard) 
and subsequently the library does not necessarily reflect a specific hydrocarbon product such as 
crude oil. 

In Table 3 the matrix of Hydrocarbon Blocks which were the basis of the library composition is 
given, with the final number of representative structures in each hydrocarbon block indicated. The 
abbreviations used in Table 3 are explained in Table 4. 

Table 3.  Matrix of Hydrocarbon Blocks in the High Resolution mode of PetroRISK, with the associated number 
of substances in the CONCAWE library that would fall into a specific hydrocarbon block. 
Abbreviations of classes explained in Table 4. 

 

 

Although there are several blocks in the matrix which end up with no representative structure, this 
was seen (by CONCAWE) as not problematic as these were blocks that are in general not 
determining the toxicity of hydrocarbon petroleum compounds. Structures denoted with NA in 
Table 3 do not exist. 

The HBM model has an additional 6 substances present in the library when compared to the 
library used in the PetroTOX model as reviewed in this study. This difference is discussed further 
under the next heading. Apart from these additional six compounds, the substances in the 
CONCAWE library used by both methods are identical. 

Furthermore, it is observed that the ID numbers used by Petrotox and the HBM model are identical 
up to nr 685, but from then on the library constituents are numbered differently. This might be 
confusing when comparing the choice of representative structures for specific hydrocarbon blocks 
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between Petrotox v3.05 and HBM model (v.15-07-2008). In the library used in the newly 
developed PetroRISK tool (which combines the PetroTOX and HBM excel worksheet tools into 
one, an altogether new identification number is given to the library of substances, but reference to 
the ID-numbers used in both Petrotox and the HBM model is given. 

When discussing the CONCAWE library in the present report, we refer to the larger 1518 
compound containing version, as used in the HBM tool [van de Meent, 2008], dated 15-07-2008, 
unless it is explicitly otherwise indicated. 

The library is divided in functional chemical classes for the purpose of defining Hydrocarbon 
Blocks. Two divisions are applied, a coarse separation (called LowRes) and a fine separation into 
classes (called HighRes). 

The first division used in both PETROTOX and HBM, used to define hydrocarbon blocks in the 
Low Resolution mode, distinguishes between aliphatic and aromatic substances, and subsequently 
defines the hydrocarbon blocks based on boiling point fractions. The library contains 544 saturated 
aliphatic substances and 158 unsaturated aliphatic substances (olefins), together 702 aliphatic 
substances, roughly half of the library. The aromatic substances in the library make up a slightly 
larger part, with 816 of the 1518 substances having at least one aromatic ring in their structure. 

It should be noted that when a substance is defined as “aromatic” this does not imply that the 
chemical structure is mainly aromatic. A substance like 1-ethyl 4-2,6,10,14 tetramethylhexadecyl-
indane, Figure 3, is characterized as “aromatic”, but the number of aromatic carbon atoms is only 
6, on a total of 31 carbon atoms. Its chemical behaviour is more likely to reflect aliphatic 
substances than aromatic substances. There is a large fraction of aromatics in the CONCAWE 
library with large aliphatic substituents.  

 

Figure 3. Structure of 1-ethyl 4-2,6,10,14-tetramethylhexadecyl-indane 

 

The division used for the High Resolution mode uses sixteen different chemical classes, and 
subsequently uses the number of carbon atoms (instead of the boiling point fractions used in the 
LowRes mode) to define the hydrocarbon blocks. These sixteen classes and the number of 
substances present in the CONCAWE library in each class are given in Table 4.  

From this table it follows that polyaromatic structures, and the naphthenic mono-aromatic 
structures are highly represented (in numbers) whereas relatively few of the olefinic (both linear 
and branched) structures are present in the CONCAWE library. 

The division in subclasses as used in the HBM is less straight forward, as no numbered classes are 
indicated in the CONCAWE library incorporated in the HBM, and the class names are not equal to 
the names used in the PETROTOX model. For instance, the HBM library has a class named 
“alkane, mono-cyclo”, with 197 representatives in the library. This HBM class is a merger of 
PETROTOX classes n-CC5 (58 substances), n-CC6 (89), i-N (59) and one substance from the 
class naphthenics, mono aromatic.  
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Table 4. Composition of the CONCAWE library 

 
Class: Petrotox description:   #   %  
n-P linear alkanes: n-paraffins     31   2.1 
i-P linear alkanes: iso-parrafins  145   9.6 
n-CC5 parent and substituted cyclopentanes     58   3.8 
n-CC6 parent and substituted cyclohexanes    89   5.9 
i-N other naphtenics     49   3.2 
di-N  di-naphthenic structures   99   6.5 
n-olefins   linear olefinic structures   19   1.3 
i-olefins branched olefinic structures    49   3.2 
PolyN  poly naphthenics   66   4.4 
AIS sulphur bearing aliphatics compounds   20   1.3 
MoAr  parent and substituted Mono Aromatics 128   8.5 
NmAr  naphthenic mono Aromatic structures 174 11.5 
DiAr diaromatic structures 121   8.0 
NDiAr  naphthenic diaromatic structures 110   7.3 
PolyAr  polyaromatic structures 284 18.8 
ArS  sulfur bearing aromatic structures   70   4.6  

1512 100% 
 

Differences between the libraries used in PetroTOX and HBM [Van de Meent, 2008] 
The 6 substances which are added in the HBM model (15-07-2008) which are not present in the 
CONCAWE library used in PETROTOX v3.05 [PetroTox, 2006] are:  

adamantane  2-methyl-adamantane  2-ethyl-adamantane 
diadamantane  1-methyldiadamantane  1,3,5-Trimethyladamantane. 
 

These are all adamantane based structures. Adamantane is shown in Figure 4. 
 
In the 1512 structure PETROTOX library no other tricyclo-aliphatic compounds are present. The 
structurally most similar reference substances in the library used by CONCAWE are the mono-
cyclohexane- and bicyclohexane-like structures (decalines). Decaline is shown in Figure 5. 
 

 

 

 

 

Figure 4. Structure of Adamantane    Figure 5. Structure of Decaline 

 
Petroleum is the only natural source of adamantane; its content varies between 0.0001 and 0.03% 
depending on the oil field and is too low for commercial production [Bagriy, 1989]. In terms of 
representativity one could argue that 6 adamantane structures on a total of 1518 substances in the 
library (i.e. 0.4%) is a factor of 13 (0.4/0.03) too much, when natural oils should be represented. 
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However, for a product in which adamantanes have been enriched, the representativity could also 
turn out to be too low. This example shows in general the problem with defining a representative 
library of structures, when it will be applied to an unforeseen diversity of products, which are not 
even all based on or derived from the same crude (oil) product. 

Analysis of the validity of the CONCAWE library 
In general, comparing the composition of petroleum products and the composition of the 
CONCAWE library it can be stated that all obvious classes of hydrocarbon structures, which might 
be present in hydrocarbon petroleum products, are also present in the library, with the exception of 
Nitrogen and Oxygen petroleum components. Several hydrocarbon blocks that are present in the 
High Resolution mode in the PetroTox and HBM tools are empty, but this does not necessarily 
indicate a lack of representative substances in the library. For example olefins with a carbon 
number above 18 are not encountered in oil products.  

It is however impossible to state in general whether the number of structures in the library is over- 
or under-representing fractions in oil or more in general in hydrocarbon products, because 
fractions can vary indefinitely for (commercial) products, and the (size of) the hydrocarbon blocks 
is up to the user to define. Given the fact that any representative structure present in the 
CONCAWE library is given an equal weight (within each hydrocarbon block that is defined by the 
user) this can give rise to a large deviation in representativity from the real composition of the 
mixture which is being assessed. 

From the sensitivity analysis of the HBM performed by Van de Meent [2008] for CONCAWE, it 
appears that a Hydrocarbon Block definition using the Low Resolution (distinction between 
aliphatic and aromatic only) and using 7 different boiling point fractions (total: 14 different 
hydrocarbon blocks) gave the lowest uncertainty in a MonteCarlo analysis based on the 
uncertainty of the different input parameters. 

The reason that the LowRes mode gave a lower uncertainty than the HighRes mode is probably 
due to the fact that increasing the resolution, by introducing the 16 different chemical classes, gave 
rise to very sparsely populated or even empty hydrocarbon blocks. This indicates that the 
CONCAWE library of 1518 substances is apparently not large enough to allow for such a 
subdivision into 16 separate chemical classes. When a hydrocarbon block, as defined by the user, 
is found to have no representative structures in the CONCAWE library, the PetroTOX and HBM 
methods “borrow” the properties of the next neighbouring hydrocarbon block that does have 
representative structures in the library. It is concluded that, when this situation is encountered in 
the risk assessment of a specific product, it should be seen as an indication that PetroTOX and 
HBM tools might not be appropriate tools to estimate the risk for that specific product.  

Since the whole exercise is based on QSAR generated values for the physicochemical properties 
used in deriving the PEC and PNEC, theoretically the library can be filled with hypothetical 
chemical hydrocarbon structures until the required number is reached to have a good 
representation in each of the 16 structural classes. However, in doing so one has to wonder how 
“representative” such theoretical structures are of the real properties of a hydrocarbon product, 
given the fact that each structure is given equal weight (within its hydrocarbon block) in 
determining the PEC and PNEC of that specific hydrocarbon block. 

An alternative solution which might improve representativity, is not using average properties for a 
hydrocarbon block, where the average is determined (in part) by the (assumed equal) weight 
(representativity) assigned to each structure in the CONCAWE library. Instead it could be 
considered to assign/determine Quantitative Structure-Activity Relationships following the trend 
in each specific chemical class, where the properties which are now taken as averages of the 
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representative structures in each hydrocarbon block, are calculated as dependent on either the 
Boiling Point (LowRes mode) or Carbon Number (HighRes mode). This approach has been 
followed by Verbruggen et al. [2004, 2008]. It brings the added benefit that the estimate for a 
hydrocarbon block is not dependent on whether there are actual components present in the library 
for representing a certain hydrocarbon block. Therefore no “empty” hydrocarbon blocks can occur 
and “borrowing” properties from a nearest neighbour block is not necessary. However, in such an 
approach it is even more important to limit the size of the blocks, because average properties are 
used, and extremes within a block are disregarded. 

In general both the PetroTox and the HBM tools reviewed here allow the user to freely choose the 
way he wants to divide his product/mixture into hydrocarbon blocks, i.e. the boiling point intervals 
in the case of the LowRes method, and the intervals based on the number of carbon atoms can be 
chosen very small or very broad, as the user seems fit. This could lead to the incorrect assumption 
that the HBM will always give the same quality of results. However, a higher resolution, also in 
the boiling point ranges or the number of carbon atoms ranges, will lead to a better 
characterization of the model, which will in turn lead to a more accurate risk assessment, until the 
method starts to generate “empty” hydrocarbon blocks, indicating the resolution becomes too high 
in comparison to the size of the library. 

In the very recent PetroRISK implementation [available through personal communication with 
CONCAWE] of PetroTox and the HBM tool, the user can only choose between two different 
resolutions; LowRes using the distinction between Aliphatics and Aromatics, and with prescribed 
Boiling Point ranges of 50°C, and HiRes, distinguishing the 16 chemical classes and with a 
prescribed carbon number range of 3 (each block only spanning 3 carbon numbers, i.e. C6-C8, C9-
C11 etc.). This seems a reasonable limitation, forcing the user to work with sensible hydrocarbon 
blocks. However, for the aliphatics a shift in three carbon atoms comprises a log Kow range of 
~1.5 unit, which is too large to consider this as a homogeneous block for the lower aliphatic 
substances. 
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3.1.3 Physicochemical properties 
Physico-chemical properties for the various hydrocarbon blocks (high or low resolution) used 
within PETROTOX and HBM are derived from the CONCAWE library of chemical properties for 
individual representative structures which are derived from basic structure types typically found in 
petroleum. The chemical properties include sub-cooled liquid solubility, Henry’s Law Constant 
(HLC), log Kow, molecular volume, boiling point, chemical class and molecular weight.  The 
parameters were estimated from SPARC v4.2 (May 2008), an on-line program that computes 
chemical properties from chemical structure [Carreira et al. 1994].  

SPARC and EPISuite QSAR models 
Most models that predict a given physicochemical property (e.g., solubility, boiling point, etc.) are 
based, in a very direct way, on experimental data for that property for a limited training set of 
chemicals. Model development involves finding the best correlations between various descriptors 
of chemical structure and the observed property values. These descriptors are subsequently used to 
construct a model that adequately “recalculates” the training (or calibration) data set. Then, to 
validate, one must demonstrate that the empirical model also accurately predicts property values 
for chemicals not included in the training set, but whose experimental values are known. These 
data are often called the validation set. In order to predict a new physicochemical property (e.g., 
octanol/water partition coefficient), the entire process must be repeated, requiring new training and 
validation data sets for each new property. This applies to all the models of the US EPA EpiSuite 
as applied in the HBM tool [Van de Meent, 2008). 

On the other hand, with SPARC, experimental data for physicochemical properties (such as 
boiling point) are not used to develop (or directly impact) the model that calculates that particular 
property. Instead, physicochemical properties are predicted using a few models that quantify the 
underlying phenomena that drive all types of chemical behavior (e.g., resonance, electrostatic, 
induction, dispersion, H-bonding interactions, etc.). These mechanistic models were parameterized 
using a very limited set of experimental data, but not data for the end-use properties that will 
subsequently be predicted. After verification, the mechanistic models were implemented in various 
software modules that calculate properties (such as boiling point). It is critical to recognize that the 
same mechanistic model (e.g., H-bonding model) will appear in all the software modules that 
predict the various end-use properties (e.g., boiling point) for which that phenomenon is important. 
Thus, any comparison of SPARC-calculated physicochemical properties to an adequate 
experimental data set is a true model validation test as there is no training (or calibration) data set 
in the traditional sense for that particular property.  
 
Validation of the models 

For an indication of the performance of the SPARC models on different physicochemical 
endpoints reference is being made to Hilal et al. [2003]. In general the validation data presented 
here are extremely good. There is no reason to think that performance of the SPARC models 
specifically for the CONCAWE library of hydrocarbon structures would be worse (or better) than 
the averages presented in this validation report. For model performance and validation results of 
the EPISuite models for physico-chemical properties, fate and degradation reference is made to the 
manuals and help-files that are provided with the EPISuite set of models (available online from 
EPA).  

The comparison of the SPARC models to the data generated using the EpiSuite models shows, for 
the different physicochemical endpoints, that both are capable of reproducing the experimental 
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data very well, but despite similar performance on substances for which experimental data is 
available, large differences within the CONCAWE library are observed between the two 
estimation methods. Without data it is difficult to say that one method is correct and the other is 
incorrect. However, if the SPARC models have not been trained to reproduce the experimental 
data in the PhysProp database (as the EpiSuite models definitely have been optimized to do) than 
one would have more confidence in the SPARC predictions over the EpiSuite models for those 
substances that do not have experimental data. 

However, the publication on solubility and log Kow estimation modules within SPARC [Hilal et 
al., 2004] clearly shows that some optimization of statistical parameters for SPARC-calculated 
Solubility, Activity and Distribution coefficients has been performed, using training and testing 
datasets. Therefore it is difficult to give a clear recommendation on which physico-chemical 
QSAR models (from SPARC or EpiSuite) would be preferable. 

In the following, the validity of the calculated environmental fate parameters as used within 
PETROTOX and HBM is assessed. The formulas used and any inherent assumptions made in their 
derivation were critically evaluated based on the underlying data and by comparison with 
experimental data. Also other available QSPR/QSAR models are compiled and compared to those 
used in PETROTOX and HBM. 

Melting Point, MP 
Melting Point is used in the CONCAWE Hydrocarbon Block Model but it is not used in 
PetroTOX. Its use in the HBM is to determine the state of physical state of a substance (i.e. solid, 
liquid). As such, it does not have a large influence on the calculation of the Fate Factors, and the 
subsequent PECs.  

The values used in the HBM are the “Experimental database” values from the EPISuite, i.e. the 
experimental values as gathered in the PhysProp database [PhysProp], when available. For the 
substances which have no experimental value in the PhysProp database the estimate from the 
MPBPVP model is used v.1.43 (2008), from US EPA/Syracuse, as provided in the EPISuite. 

A comparison of the values used in the HBM CONCAWE library versus experimental values is 
therefore not useful, as all experimental values have been used in the library. In general the quality 
of the estimate of the melting point is described in the EPISuite user manuals, and its 
recommendation (at the end of the quotation) is that the estimates can be used for screening 
purposes at best. However, its use to determine the physical state seems to be acceptable. 

The following qualification and Figure 6, indicating the performance of the MPBPWin model in 
predicting Melting Point, are taken from the EPISuite user manual, available online. It should be 
noted that this applies to organic substances in general, not only hydrocarbon substances:  

“The ability to Predict Liquid versus Solid:  The PHYSPROP Database contains 3246 compounds 
designated as liquids or having melting point less than 25oC.  In addition, it contains 8225 
 compounds with melting points greater than 25oC. For these datasets, MPBPWIN  predicts the 
following (assuming compounds with MP of 25oC or less are liquids & compounds with 25oC or 
greater MP are solids): 

For 8225 solid compounds - MPBPWIN predicts 93% of the compounds will be solids 
For 3246 liquid compounds -  MPBPWIN predicts 70% of the compounds will be liquids 
For all 11471 compounds - MPBPWIN correctly predicts the physical state of 86% of all 
compounds. 

Estimated melting points from MPBPWIN can only be recommended for screening purposes (at 
best).” 
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Figure 6.  Accuracy of the Melting Point model from EPISuite for a 10051 substance test set (taken from 
the MPBPVP Help file). 

 
The evaluation of the quality of the Melting Point data underlying the QSAR models is performed 
by comparing the PhysProp database reported melting point values to the melting point data 
assembled by Verbruggen et al. [2008] for 262 single hydrocarbon substances. These values have 
been plotted against each other in Figure 7. It should be concluded that the sources for most 
substances are the same. 

It is observed that for allmost all single hydrocarbon structures for which evaluated experimental 
values are given by Verbruggen [2008], the data comply with the referenced values in the 
PhysProp database. For only one substance, 1-methylnaphthalene, the reported values for Melting 
Point are so different that it would also affect the aggregation state of a substance at room 
temperature (-30.4°C, Verbruggen, 2008 and 34°C, PhysProp database) 

The differences observed for the other substance will have very limited or no impact on the 
evaluation of the subsatances/hydrocarbon blocks in both PetroTOX and the HBM tool. 
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Comparison of experimental Melting Point data from two sources
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Figure 7.  Comparison of experimental Melting Point data compiled by two different sources, for 262 
Hydrocarbon structures. Individual data is presented in Annex I 

 

Boiling Point, BP 
Boiling point is used both in PetroTOX and CONCAWE HBM. However, the values used in 
PetroTOX are the SPARC v4.2 calculated values, and the source of the values used in the HBM 
tool are not identified in the different accompanying documents. It is assumed that the boiling 
points used in the HBM have been estimated with a newer version of SPARC, but not the most 
recent version. This is deduced from a small attempt to reproduce the SPARC estimates as used by 
the PETROTOX model:  
 
Example calculations for the substance BENZENE: 

CONCAWE library in HBM excel sheets BP =   77.96  °C 
SPARC 4.2 (CONCAWE library in Petrotox)  BP =   79.05  °C 
SPARC 4.5 (current version, online)   BP =   77.72  °C 
MPBPVP v1.43 calc’d     BP = 102.24  °C  
experimental Database (PhysProp)   BP =   80.00  °C 

 
The assumption that the boiling points used in the HBM tool have been generated with a newer 
version of SPARC is also in line with the updated CONCAWE library (six extra compounds) 
applied in the HBM tool. It is not in line with the calculations for other physico-chemical 
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properties, which are only used in the HBM model and not in Petrotox. Most physico-chemical 
estimates come from the EPISuite models / USEPA, not from the also available SPARC models. 

The accuracy of the different estimates when compared to the experimental values is not very 
different, as graphically visible in Figure 8. The correlation coefficient R2 of the regression line 
plotted in the graph for the SPARC v4.2 model is slightly better than for the data used in the HBM 
tool (SPARC v4.x?), but this is statistically not a relevant difference. The concordance of the 
predictions from the USEPA model for boiling point MPBPVP v1.43 with the experimental data is 
slightly less than for the SPARC models (both versions), but still very well reproducing the 
experimental data available for the hydrocarbons present in the CONCAWE library. It should be 
noted that the experimental values to which the boiling points are compared come from the 
PhysProp database from Syracuse inc. [PhysProp DB], i.e. these are the data on which the 
MPBPVP model, and very likely also the SPARC models, were fitted (data given in Annex I). 

However, when comparing the QSAR estimated boiling point values for the whole CONCAWE 
library, there is much more deviance between the models than would be expected based on the 
comparison of the different SPARC versions versus the experimental data. It turns out that the 
values used in the HBM model sometimes markedly differ from the values used to establish the 
Hydrocarbon blocks in PetroTOX.  
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Figure 8.  Comparison of three Boiling Point QSAR estimates on the subset of the CONCAWE library 
for which experimental boiling point data is available. Individual data is presented in Annex I. 
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Several (groups of) substances can be identified in Figure 9 where the difference between the 
calculated boiling points from different methods is > 100 degrees. It depends very much on the 
definition and resolution of the hydrocarbon blocks whether this will have significant influence on 
the outcome of the hydrocarbon block method. The HBM LowRes3 example in the vdMeent 
analysis uses BP intervals of 50 degrees Celsius to define 7 different blocks (both aliphatic and 
aromatic). In the graph a 50°C interval around the 1:1 line is also plotted. At least the substances 
that are out of this boiling point interval will probably be assigned to a different hydrocarbon 
block. The fraction of the substances outside the interval compared to the total number of 
substances should give some insight of the number of substances that would end up in a different 
hydrocarbon block, when using the LowRes3 scheme as used in the HBM analysis from Van de 
Meent [2008]. There are in total 197 substances outside this 50°C range. That amounts to ~13% 
which certainly will end up in a different block, but even substances with a much smaller 
difference can end up in a different block, if they are close to the extreme values of the blocks. It 
seems very well possible that this change of 13% of the substances will have a significant 
influence on the average PEC and PNEC calculated for the different blocks. This also very much 
depends on the number of representative structures in a specific hydrocarbon block. In situations 
where a single hydrocarbon block is represented by only few substances (as is the case for some of 

Comparison of PetroTOX and HBM estimated Boiling Points
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Figure 9.  Comparison of the Boiling Point predictions from two different QSAR models, for the whole 
CONCAWE library (1512 compounds). Individual data is given in Annex I. 
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the blocks in the LowRes3 scheme as used by Van de Meent [2008]), the change of only one 
substance from or to such a hydrocarbon block can have a very significant influence on the 
average value of the PEC or PNEC derived for that hydrocarbon block. 

Overall it is not consistent or logical that two methods, which should be combined to calculate a 
risk, use two different methods (boiling point estimates) to define their hydrocarbon blocks. It 
would make much more sense if both methods use the same physicochemical properties for the 
whole library of representative structures. This issue with the different boiling points might have 
been resolved by CONCAWE in their combined PetroRISK tool which integrates the PetroTOX 
and HBM tools. This was not checked for this evaluation 

An additional evaluation of the quality of the Boiling Point data underlying the QSAR models is 
performed by comparing the PhysProp database reported Boiling Point values to the boiling point 
data assembled by Verbruggen et al. [2008] for 309 single hydrocarbon compounds. This 
comparison is visualized in Figure 10. It is seen that for all 309 single hydrocarbon structures for 
which evaluated experimental values are given by Verbruggen et al. [2008], the data comply with 
the referenced values in the PhysProp database. Although differences of several tenths of degrees 
Celsius are frequently noted, the overall picture is that there are no substances for which the 
experimental data disagrees between the two independent sources. 
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Figure 10.  Comparison of experimental boiling point data from two different (compiled) data sources, 
for 309 hydrocarbon compounds. Individual data is presented in Annex I. 
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Water solubility 
The values for water solubility used in the PETROTOX model are calculated by SPARC v4.2. The 
values used in the HBM model are not properly accounted for, but seem to come predominantly 
from the experimental values [PhysProp database] or from the WSKOW model as supplied in the 
EPISuite from USEPA. For some substances, the values as calculated by the WATERNT model 
from the same EPISUITE have been preferred. We could not (within the limited timeframe) figure 
out in which case preference was given to a specific model, or why. For one substance an error in 
the HBM library of three orders of magnitude was made (mg/l vs. g/l), n-nonane, experimental 
water solubility 0.22 mg/l and the value used in the HBM library is 220 mg/l. 

The performance of all three models (SPARC, WSKOW and WATERNT) versus the experimental 
values for water solubility in the PhysProp database is very comparable, as shown Figure 11, and 
as indicated by the R2 values for the linear regression lines plotted in this graph. 

Water solubility estimates vs. experimental values for the CONCAWE library
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Figure 11.  Comparison of water solubility estimates from three different QSARs, and the dataset used in 
the HBM tool [Van de Meent, 2008] with experimental data from the PhysProp database 
[PhysProp db] for the subset of substances in the CONCAWE library for which experimental 
data was available. 

 



 

 
31 

The HBM selected values perform best, in terms of regression coefficient (r2) and also with the 
slope of the regression line being closest to 1. This is to be expected as the majority of the values 
are taken from the PhysProp database, only for a minority the calculated values are preferred in the 
HBM model over the experimental values. The SPARC model performs better than the WSKOW 
and WATERNT models on this hydrocarbon substance data set. 

An important observation is that there are significant differences in solubility between the models 
used in PetroTOX (SPARC v4.2) and the HBM tool (using WSKOW or WATERNT), although 
their statistical performance for the subset of substances in the CONCAWE library for which we 
have experimental values is comparable. This is similar to what was seen for the boiling point 
estimates used in the two tools. 

The difference in predictions for the whole CONCAWE library between the values from 
PETROTOX (SPARC 4.2) and the HBM (WATERNT or WSKOW) is visualized in Figure 12.  
 

Comparison of Water solubility estimate from Petrotox and HBM for the CONCAWE library
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Figure 12.  Comparison of water solubility estimates from two different QSAR models  for the whole 
CONCAWE library (1512 compounds). Individual data is presented in Annex 1. 

 
Assessing the validity of the water solubility data underlying the QSAR models applied in 
PetroTOX and HBM is performed by comparing the experimental data as compiled in the 
PhysProp database to experimental data assembled and evaluated independently by Verbruggen et 
al. [2000a, 2008]. The data from Verbruggen can be considered to be thoroughly evaluated and 
more recently evaluated. The experimental data in the PhysProp databases also formed the training 
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data set for both the EpiSuite QSAR models (WATERNT and WSKOW in this case) as well as the 
data on which the SPARC models have been calibrated. Visual inspection of the two datasets is 
possible by plotting them against each other, as given in Error! Reference source not found.. For 
almost all 88 substances, the experimental data from both sources match extremely well. The only 
6 exceptions (difference between experimental data a factor of 10 or higher) are given in Table 5. 

Comparison of (experimental) solubilities used for establishing the QSAR 
model applied in the HBM method.
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Figure 13.  Comparison of experimental boiling point data from two different (compiled) data sources, 
for 309 hydrocarbon compounds. Data from Verbruggen et al. [2000a] represent subcooled 
liquid solubility. Individual data is presented in Annex I.     

 
 

Table 5.  Experimental water solubilities from two different (compiled) data sources where the reported water 
solubilities differ more than a factor of 10. 

   WS*    WS   WS 
   [Verbruggen 2000a] [PhysProp DB] factor (WSKOW estimate) 
Anthracene  7.07  mg/l  0.043  mg/l 163 0.69  mg/l 
Chrysene  0.31  mg/l  0.002  mg/l 153 0.026  mg/l 
Benzo[k]fluoranthene 0.087  mg/l  0.0008  mg/l 108 0.011  mg/l 
Benzo[ghi]perylene 0.044 mg/l  0.00026 mg/l 168 0.0028  mg/l 
Benzo[a]pyrene  0.058 mg/l  0.00162 mg/l   36 0.010 mg/l 
1,3,5-cycloheptatriene 62 mg/  620 mg/l   10 202 mg/l 
* Subcooled liquid solubility 
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The difference in solubility found for 1,3,5-cycloheptatriene might be due to a typing error in one 
of the sources (difference is exactly a factor of 10), but the solubility of PAH structures seems to 
be consistently reported much higher by Verbruggen et al. [2000a] than in the PhysProp database. 
It is observed that the QSAR estimates for these 5 PAHs are consistently around a factor of 10 
higher than the experimental value from the PhysProp database (which served as the training 
dataset), but still lower than the experimental values for subcooled water solubility reported by 
Verbruggen et al. [2000a, 2008]. 

The quality of the water solubility estimates is found to be disputable for a number of PAH 
structures. The QSAR estimates for these PAHs are closer to the experimental data on subcooled 
liquid solubility assembled by Verbruggen et al. [2000a] than to the experimental data from the 
PhysProp database on which the QSAR model was trained. 

For environmental risk assessment, solubility only plays a role in the determination of 
environmental fate factors, but not in the determination of the HC5 coming from PetroTOX. In 
PetroTOX the (subcooled liquid) solubility estimates are used to calculate the loadings in order to 
derive an LL50 value, which is directly used to determine the actual concentration at different 
loadings. These loadings are used for the hazard characterization, i.e. C&L.  

Although the different estimates for solubility are not mixed up in one assessment (risk or hazard) 
it seems incorrect to use different QSAR models in the PetroTOX and HBM tools, generating 
different solubility estimates, and subsequently base the hazard characterization on one solubility 
estimate, and the risk characterization on another. However, it should be noted that for the 
determination of the lethal loadings in PetroTOX the subcooled liquid solubility should be used for 
solids, instead of the normal solubility. Raoult’s law is applied in the calculation of the lethal 
loading and to apply Raoult’s law subcooled liquid solubility is needed instead of normal water 
solubility.  

Further it should be noted that for the highest n-alkanes for which experimental data are available, 
the experimental data used in the HBM model do not represent true aqueous solubility, but are 
more likely to reflect colloidal accommodation of hydrocarbons [Verbruggen et al., 2000a]. This 
colloidal accommodation is not representative of environmental distribution and should thus not be 
used instead of the true aqueous solubility. Unfortunately, the QSAR estimates by EPIWIN, used 
if such experimental values were not available, are partly based on these colloidal influenced 
experimental values in the PhysProp database and deviate from true aqueous solubility as well. 
This has strong influences on the properties of the higher aliphatic substances. For example, the 
estimates for true aqueous solubility based on molar volume at boiling point [Verbruggen et al., 
2000a], would be in the order of 1 femtogram per liter (1 fg =10-15 g) for n-hexacosane (n-C26). 
The value used in the HBM model is 1.7 µg/L. The estimate from WSKOWWIN (EPIWIN) is 9 
pg/L, while the SPARC estimate results in 8 fg/L. 
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3.1.4 Fate properties; partitioning and degradation 

Octanol-Water Partitioning coefficient (Kow)  
As noted for boiling point and water solubility, PETROTOX uses SPARC 4.2 to estimate the log 
Kow, whereas the HBM uses experimental values from the PhysProp database when available, and 
the KOWWIN v.1.67a estimate from the USEPA EpiSuite when no experimental value is 
available. 

Again, when comparing the estimates with the experimental values for those substances in the 
CONCAWE library where an experimental value is available, the two methodologies do not seem 
to qualitatively differ very much, and both are capable of reproducing the log Kow values with a 
high degree of reliability. This is visualized in Figure 14, and the regression equations given in this 
figure confirm the close fit of the estimates to the experimental data. It can be concluded from 
these regression equations that in general the KOWWIN model is slightly underestimating the 
experimental values (slope of 0.95 in the regression equation) whereas the SPARC model is 
slightly overestimating the experimental values (slope of 1.05 in the regression equation). These 
differences only become significant at log Kow values above 6, as can be seen by the separation of 
the two regression lines in Figure 14 . 

Comparison of KOWWIN estimates vs. experimental values for the CONCAWE library
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Figure 14.  Comparison of QSAR estimated octanol-water partition coefficients from two different QSAR 
models against experimental partition coefficients, for the subset of substances from the 
CONCAWE library for which experimental data was available. Individual data is presented in 
Annex I. 
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Comparing estimates from PETROTOX and HBM for log Kow for the whole 
CONCAWE library
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Figure 15.  Comparison of QSAR estimates from SPARC v4.2  and KOWWIN v1.67a QSAR models to 
each other for the whole CONCAWE library (1512 compounds). Individual data are presented 
in Annex I. 

 
However, when comparing the estimates from the two methods for the whole CONCAWE library, 
see Figure 15, large individual differences in the estimates between the two methodologies are 
visible. Figure 15, where the whole dataset is used for comparison, also seems to indicate that in 
general the SPARC estimates are higher than the KowWin estimates (which was also observed in 
the comparison of the model estimates to the experimental data), as practically all of the values in 
this figure are at or below the 1:1 line. However, when the more relevant fraction of the 
CONCAWE library with a log Kow<8 is looked at in more detail (Figure 16) these structural 
higher estimates from the SPARC model are not observed anymore, although there still is 
considerable scatter in the data. When the data is split into aliphatics and aromatics (according to 
the LowRes mode indication provided in PetroTOX) it is observed that for the aromatics there is 
no systematic over- or underprediction of one model against the other, but for the aliphatics all 
SPARC estimates are higher than the KOWWIN estimates (figures not given, but individual data 
which allows to reproduce this observation, including the graphic representation, is given in Annex 
I). The variability between the two methodologies below a log Kow (estimated) of 8 seems to be 
more limited than for the very high (theoretical) log Kow domain. However, we still see a very 
large spread of the values up to two log units. A difference of two log units between the log Kow 
estimation used to calculate the PEC and PNEC introduces large uncertainties in the risk 
characterization in terms of RCR. 
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In our view it is not logical that the two tools which supply each one part of the risk assessment, 
use different estimates of the physicochemical properties. The log Kow in PetroTox (the SPARC 
4.2 estimate) is directly used to determine the log Kmw (micelle-water or membrane-water 
partition coefficient) which in turn is used to derive directly the HC5 (the chronic PNEC value). 

The log Kow entered in the HBM tool (KOWWIN estimates and experimental values from the 
PhysProp database) is used to determine the fate factors of the same substances in the 
environment. This implies that for the same substance the PEC and PNEC values are derived from 
different Kow values, which introduces additional uncertainties in the risk characterization.  

In defense of this approach CONCAWE argued that the Target Lipid Model was completely based 
on the SPARC log Kow estimates, and therefore it is necessary to use SPARC estimates to 
calculate the HC5, with the alternative being to re-calibrate the whole TLM on a different log Kow 
estimate (e.g. KOWWIN). Their argument to use KOWWIN estimates for the estimation of the 
fate factors was less convincing, stating that this methodology is the most accurate. There is no 
reason why the fate factors could not have been calculated using the SPARC log Kow estimate. At 
least the extrapolation from PNEC water to PNEC soil (or sediment) using the partitioning 
equilibrium method, used the same log Kow (KOWWIN estimate) as applied for the calculation of 
the fate factors, which makes sense.  

 

Comparing estimates from PETROTOX and HBM for log Kow, 
zooming in on the area with log Kow<8 
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Figure 16.  Comparison of QSAR estimates from SPARC v4.2  and KOWWIN v1.67a QSAR models for the 
subset of substances of the CONCAWE library where the (predicted) log Kow is below 8. 
Individual data are presented in Annex I. 
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For 321 substances in the CONCAWE library the difference between log Kow used in PetroTOX 
and in the HBM tool is more than 1 log units. This is more than 21% of the substances in the 
CONCAWE library. The fraction of the library for which the QSAR estimates differ substantially 
are given in  
Table 6. 
 

Table 6.  Indication of the number of substances that show a substantial difference between the two QSAR 
models used for log Kow estimation. 

Difference in log units between PetroTOX and HBM nr. of substances in CONCAWE Library 
  2       103 (  6.8%) 
  1.5       175   (11.6%) 
  1       321 (21.2%) 
  0.7       510 (33.7%) 
  0.5       718 (47.5%) 
  0.3       938 (62.0%)   
 
 
Again, the quality of the data underlying the QSARs used in PetroTOX and HBM methods 
(SPARCv4.2 and the KOWWIN model,) is assessed by comparing the data from the PhysProp 
database (which served as the training dataset for KOWWIN and possibly also to calibrate the 
SPARC models) to an independent assembly and thorough evaluation of Kow data by Verbruggen 
et al. [2008] for a set of 125 individual hydrocarbon substances. The concordance between log 
Kow from the two different data sources is very high, as can be visually seen in Figure 17. 
Therefore no discussion on the (quality of the) experimental values used for deriving the SPARC 
or KOWWIN QSAR models is required. 

The only substance for which a difference in log Kow is noted between the two sources is 9,10-
dimethyl-anthracene, where Verbruggen et al. [2000a] reports a value of 5.44 and the PhysProp 
database gives a reference value of 5.69. This difference, in the light of the experimental 
difficulties of actually measuring such higher log Kow values, and the observed variability 
between the QSAR estimates from the two models used in PetroTOX and the HBM tool seems 
negligible. 



 

 
38 

Comparison of experimental log Kow values from Verbruggen et al and 
PhysProp Database
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Figure 17.  Comparison of experimental octanol-water partitioning data from two different (compiled) 
data sources, for 125 hydrocarbon compounds. Individual data is presented in Annex I.     

 

Water-air partitioning coefficient, Henry’s Law constant 
Henry’s law constant (the water-air partitioning coefficient) is used in PetroTOX to determine the 
headspace concentration and subsequent water concentration in the calculation of the Lethal 
Loading of a hydrocarbon mixture. This parameter is therefore relevant to determine the actual 
concentrations used to classify a mixture, at different loadings. In the calculation of the HC5 (the 
chronic PNEC) which is compared to the PECs resulting from the HBM tool, Henry’s Law 
Constant (HLC) is not used. In the calculation of the Fate Factors in the HBM tool, HLC is 
determining very strongly which environmental compartments a substance will partition to. 

The HLC used in PetroTox is calculated with SPARC v4.2, whereas the HLC used in the HBM 
model to determine the fate factors for all library components is taken from HenryWin v3.20 (Oct. 
2008) provided as part of the EPISuite models from US EPA. Experimental values reported in the 
PhysProp database are used wherever available, and QSAR estimates are used when no 
experimental value is present in the database. 

The specific HenryWin v3.20 QSAR model used by the HBM tool is the Bond model, not the 
Group model. The bond contribution methodology splits a compound into smaller units (two atom 
fragments only), and includes individual hydrogen bond values; the group method does not. Both 
the Group Method and Bond Method are susceptible to estimates resulting in "Missing 
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Fragments". When a compound is split into groups or bonds, one or more of the resulting groups 
or bonds may not have a value in the library of available values. The Group Method is much more 
likely to have a "Missing Fragment" occurrence (meaning an HLC estimate is not possible). 
Although the performance statistics from the training dataset show a smaller standard error for the 
Group method estimates (HenryWin Help file) an independent evaluation [Altschuh et al., 1999] 
for a diverse set of organic chemicals found the bond method more accurate than the group 
method.  The group method generates inaccurate estimates for certain types of structures, such as 
hexachlorocyclohexanes [Altschuh et al., 1999]. It seems that these consideration formed the basis 
for the choice for the bond method in favour of the group method. From the HenryWin 
calculations for the 97 substances in the CONCAWE library  for which an experimental HLC was 
available regression lines have been calculated. 

For the Group method this yields: 

  HLC (exp.) = 0.88 x HLC (group method) – 0.25   R2=0.96, s.e.= 0.41, n=97 

And for the Bond method this yields 

 HLC (exp.) = 0.99 x HLC (bond method) – 0.14   R2=0.97, s.e.= 0.40, n=97 

Although the bond model does not have a significant lower uncertainty in the prediction of the log 
HLC (standard error of prediction 0.40 vs. 0.41 log units), it shows much less systematic 
deviation, with a slope in the regression very close to 1, and the intercept of -0.14 much closer to 0 
than for the group method (intercept -0.25). 

For the SPARC HLC estimate the regression analysis yields 

 HLC (exp.) = 0.97 x HLC (SPARC) – 0.07    R2=0.96, s.e.= 0.45, n=98 

The concordance of both the SPARC v4.2 estimates and the HenryWin Bond method estimates 
with the experimental HLC data as taken from the PhysProp database is high, and one model does 
not seem particularly better than the other, although the HenryWin Bond method seems to give a 
significantly lower standard error in the estimate of 0.40 log units HLC versus 0.45 log units for 
the SPARC model. Figure 18 is a visualization of this concordance. 
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Comparison of SPARC and HenryWIN QSAR estimates with experimental HLC data
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Figure 18.  Comparison of QSAR estimated Henry’s Law Constants (HLC)  from two different QSAR 
models against experimental HLCs, for the subset of substances from the CONCAWE library 
for which experimental data was available. Outlined squares representing the HenryWin 
v3.20 data and filled diamonds representing the SPARC v4.2 estimates. Individual data 
is presented in Annex I. 

 
 
Despite the similar behaviour of the two models for the subset of substances in the CONCAWE 
library for which experimental data is available, the concordance between the SPARC v4.2 
estimated and the HenryWin Bond method estimated HLC’s for the whole CONCAWE library is 
not very high, as can be seen in Figure 19. However, as the HLC is not used in PetroTox to 
determine the HC5, but only the LL50, this difference between the two QSAR models is not 
relevant for environmental risk assessment; only the HenryWin v3.20 estimates are used to 
determine the fate factors of the CONCAWE library components. The HenryWin Bond model, at 
least when comparing with the available experimental data, seems to predict the HLC with a 
sufficient accuracy for use in risk assessment. 
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Comparison of HLC values used in PetroTox and HBM tool
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Figure 19.  Comparison of QSAR estimates from SPARC v4.2  and HENRYWIN v3.20 Bond Method QSAR 
models to each other for the whole CONCAWE library (1512 compounds). Individual data are 
presented in Annex I. 

 

Organic carbon-water partitioning coefficient, Koc 
Many studies have been performed to determine the organic carbon-water partition coefficient 
(Kow) of aromatic hydrocarbons, both monoaromatic and polycylic compounds. A well known 
relationship between Koc and Kow is the following equation of Karickhoff et al. [1979] based on 
experiments with 10 compounds of which 8 are non-halogenated aromatic compounds, mostly 
PAHs, in three sediments: 
 

Log Koc = log Kow – 0.21 
 
The data for monoaromatic compounds and PAHs for sediments [Karickhoff et al., 1979] but also 
for soils [Karickhoff, 1981] fit well to this equation. Similar results are presented for PAHs by 
other authors by means of the most appropriate techniques [De Maagd et al., 1996]. For non-
substituted aliphatic compounds no data for log Koc are available for soil and sediment. However, 
Poerschmann and Kopinke [2001] measured the partition coefficient of PAHs and n-alkanes to 
dissolved humic organic matter (HOM). When these partition coefficients are corrected for the 
percentage in organic carbon in organic matter (by the standard factor of 1.7), the resulting log 
Koc values for PAHs are in accordance with the other data for PAHs (Figure 20). The data for n-
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alkanes, however, are not in line with these data. The well-known relationship between log Koc 
and log Kow for predominantly hydrophobic compounds from Sabljić et al. [1995] seems to 
describe these data more accurate (Figure 20). Therefore, the Sabljić equation is used for the 
aliphatic compounds: 
 

log Koc = 0.81 log Kow + 0.1 
 
The Koc also plays a role in PetroTOX in determining correction factors for bioavailability in the 
calculation of the Lethal Loadings. The bioavailability correction is however not used in the 
determination of the HC5 (chronic PNEC) used for the risk assessment. In the calculation of the 
individual Fate Factors for the CONCAWE library in the HBM [Van de Meent, 2008] tool the Koc 
plays an important role. In the HBM the Koc is calculated directly from the log Kow, and the 
predominantly hydrophobics QSAR from the TGD(2003) is used to do this. This is in line with the 
REACH guidance. It could be argued that the Karickhoff equation would be better suited for the 
(poly)aromatic hydrocarbons (see above), but the actual dataset used to derive the Sabljić equation 
for predominantly non-hydrophobics also contains a considerable fraction of (poly)aromatic 
hydrocarbons, whereas it does not contain any aliphatic substances, apart from halogenated 
aliphatic hydrocarbons. 

 

 

Figure 20: Organic carbon-water partition coefficients as a function of log Kow. Upper drawn line is the 
selected QSAR for the aromatic compounds [Karickhoff et al., 1979], lower drawn line is the 
selected QSAR for the aliphatic compounds [Sabljic et al., 1995]. Data: ■: PAHs and benzene 
from [Karickhoff et al., 1979; Karickhoff, 1981] ●: PAHs from [De Maagd et al., 1996]; □: PAHs 
and ○: n-alkanes from [Poerschmann and Kopinke, 2001]. 
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BCF in fish (biota-water partitioning coefficient) 
The BCF used in the HBM model are only used to estimate the concentration of fish as input for 
human intake. The PetroTox model uses a relationship with log Kow to calculate the lethal body 
burdens. The assumptions and the uncertainties of this approach are discussed under 3.2 Target 
Lipid Model. 

The values used in the HBM tool for the BCF in fish are estimates from the EPA BCFWin v2.16 
program. This estimation software has been updated recently to v3.00 and there are a number of 
marked differences. The estimates for BCF derived with USEPA BCFWin v2.16 are considered to 
be under-estimation of the bioconcentration potential of substances, possibly due to a too 
aggressive correction for metabolism. This is reflected by the graph of 35 CONCAWE 
components for which evaluated experimental BCF values were present in the PhysProp 
database.The concordance between the experimental values and the estimates used in HBM is 
shown in Figure 21.  

In the area where the experimental BCF is above 1000, there is one substance that is most 
correctly predicted, 2,2,4,4,6,8,8-heptamethylnonane, with an experimental BCF of 6600 and an 
estimated BCF of 5300. There are however 9 substances where BCFs are underestimated, with one 
extreme outlier; n-Hexadecane with experimental BCF of 5011 but an estimated BCF of 15.  
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Figure 21.  Comparison of QSAR estimated BioConcentration Factors against experimental partition 
coefficients, for the subset of substances from the CONCAWE library for which experimental 
data was available. Individual data is presented in Annex I. 
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However, the experimental BCF for this substance can not be considered a reliable value, because 
it was determined at concentrations far above the water solubility, and were subsequently 
recalculated with the water solubility as exposure concentration. It should be noted that reliable 
BCF estimates for linear alkanes generally results in low BCF values, possibly as a consequence of 
extensive metabolism [e.g. Tolls & van Dijk, 2002]. Especially for a substance like decalin, the 
estimated BCF seems to be far below the experimental value. Also the BCFs of several of the 
PAHs are rather strongly underestimated. In the range where the experimental BCF is between 100 
en 1000 there are two overestimated substances; 2,2,4,6,6-pentamethylheptane, exp.BCF=880 vs. 
est. BCF=7464, and benz[a]anthracene, exp. BCF=260 vs. est. BCF=1719. Five substances are 
clearly underestimated. 

The trend of underestimation was also recognized by the USEPA, which becomes clear when 
comparing the v2.16 estimates for the CONCAWE library with the BCFBAF v3.0 estimates for 
BCF. In Figure 22 BCF estimates for the whole CONCAWE library are plotted against each other 
from BCFBAF v3.0 and BCFWin v2.16. It is observed that the estimates in the newer version of 
the USEPA model are overall much more conservative (points above the 1:1 line in figure 22, i.e. 
the BCF estimated by BCFBAF v3.0 is higher than estimated with v2.16) than the version used in 
the HBM tool (v2.16) to calculate the fate factors. Those substance for which v2.16 is slightly 
more conservative (points below the 1:1 line in figure 22) do not belong to specific PetroRisk 
classess of hydrocarbons, all 16 classes of hydrocarbons are represented in the subgroup of 
substances for which v2.16 is (slighly) more conservative in its estimate of the BCF. 
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Figure 22.  QSAR estimated BioConcentration Factors from two different model versions (BCFBAF v3.00 
vs BCFBAF v2.16) for the whole CONCAWE library of 1518 compounds. Individual data is 
presented in Annex I. 
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When the v2.16 estimates are compared to the EU REACH Guidance and TGD(2003) 
recommended equations for BCF (as implemented in the latest EUSES versions) the 
underestimation of BCF values by BCFBAF v2.16 is even more pronounced. This is visible in 
figure 23. In the EU estimates for BCF no correction is present for possible metabolism, and these 
values can therefore be considered as maximum (passive) BCF values. 
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Figure 23.  QSAR estimated BioConcentration Factors from two different models (BCFBAF v2.16 vs EU 
TGD2003 BCFmax) for the whole CONCAWE library of 1518 compounds. Individual data is 
presented in Annex I. 

 
The Gaussian function for the maximum BCF-value on the basis of the hydrophobicity (log Kow 
in the following equation) for apolar organic chemicals in fish was retrieved from REACH 
Guidance R.11: 
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The parameters in this equation are slightly different from those of the curve shown in Figure R11-
4 of the REACH Guidance R.11, because in the calculations in the CONCAWE HBM the log Kow 
was estimated by USEPA KowWin instead of ClogP. 
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A regression analysis of the three estimation procedures using the very limited, 34 substance 
(excluding n-hexadecane), dataset of hydrocarbon substances for which experimental values are 
available, yields the following regression equations: 

 
Log BCF(exp.) = 1.08 x log BCF(v3.00) - 0.20   R2= 0.70, s.e.=0.45, n=34 
 
Log BCF(exp.) = 1.08 x log BCF(v2.16) - 0.15   R2= 0.63, s.e.=0.50, n=34 
 
Log BCF(exp.) = 0.87 x log BCFmax(EU guidance) - 0.40 R2= 0.66, s.e.=0.48, n=34 
 
From this limited dataset it cannot be concluded that BCFBAF v2.16 is under-estimating, as both 
the slope (1.08) and intercept (-0.20 vs -0.15) are very similar slope for both versions (v3.00 and 
v2.16). It can however be clearly observed in Figure 22 that the BCFs from v.2.16 are always equal 
to or below the estimates from v3.00. This shows the limitations of the analysis using this very 
small experimental dataset. 

The estimates from the EU REACH Guidance equations, giving a BCFmax, and lacking any 
correction for metabolism, are clearly more conservative, also in predicting the limited 
experimental dataset. The slope of the regression line is 0.87 (vs. 1.08 for the BCBAF models), 
and the regression analysis shows a significant systematic error (over-estimating) as indicated by 
the intercept of -0.40. 

If a conclusion on the quality of the three models should be based on this limited dataset, it would 
be that BCFBAF v3.00 would be the best choice for predicting BCF for (petroleum) hydrocarbons. 
Based on the comparison of the two BCFBAF versions an update of the BCF estimates to v.3.00 
used in the HBM tool would be required to avoid underestimation of the bioconcentration 
potential. 

(Bio)Degradation 

Introduction 

Biodegradation of petroleum hydrocarbons is a complex process that depends on the nature and on 
the amount of the hydrocarbons present. There are different factors influencing the hydrocarbon 
degradation such as oxygen levels, pH, available nutrients, humidity, salinity and temperature 
[Cooney et al. 1985]. Another important factor is the availability to microorganisms. In addition to 
bacteria, fungi, cyanobacteria, yeasts, and protozoa are all able to degrade mineral oil. 
Hydrocarbons differ in their susceptibility to microbial attack. The biodegradation rate of different 
constituents groups generally decreases in the order of: linear alkanes, branched alkanes, low-
molecular weight aromatics, PAHs and cyclic alkanes [Das&Chandra, 2010 and refs. therein]. 
Alkanes are usually terminally oxidized to the corresponding alcohols, aldehydes and fatty acids. 
The degradation of long-chain alkanes can be slowed down due to the poor water solubility and 
sorption to organic matter.  Branched alkanes are more difficult to degrade than linear alkanes, 
which is due to the limited substrate range of the monooxygenases and the more difficult 
metabolism in the β-oxidation route. Degradation of mineral oil can also occur under anaerobic 
conditions. However, the rate is much slower than under aerobic conditions.  

Degradation half lives estimates for surface water, soil and sediment 

The estimated aerobic primary half-lives in soil, water and sediment in the HBM/Petrorisk model 
are derived from the model BIOHCWIN. This model was developed based on a training set of 
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environmentally-relevant experimental data for 121 hydrocarbons (see Table 7) and was validated 
using 54 compounds.  
 

Table 7. Overview of the petroleum compounds used for the training set to develop BIOHCWIN 

 
Compound class No. of 

compounds 
Carbon nr 
range 

n-Alkanes 20 C5–C34 

Alkenes 1 C14 

Branched alkanes 28 C6–C20 

Monocycloalkanes 7 C5–C8 

Fused-ring 
cycloalkanes 

3 C10–C14 

Hopanes 3 C25–C30 

Monoaromatics 17 C6–C10 

Unsubstituted PAHs 16 C10–C24 

Alkylated PAHs 12 C11–C19 

Hetero-PAHs 5 C8–C16 

Biphenyls 1 C12 

Indans and Indenes 5 C9–C10 

Naphthenoaromatics 3 C16–C21 

 
 

The “experimental” data are not actually measured (primary degradation) half lives, but 
“recommended half lives” based on an evaluation of all available biodegradation test and 
monitoring data available in the Environmental Fate DataBase [EFDB, SRC Inc.]. The original 
fragments from the MITI BIOWIN model were initially used as structural descriptors and 
additional fragments were then added to better describe the ring systems found in petroleum 
hydrocarbons and to adjust for non-linearity within the experimental data.  

It was highlighted that not for all groups of petroleum compounds sufficient information was 
available. The majority of available data were for benzene, toluene, ethylbenzene, and xylene 
(BTEX); the isoprenoids phytane and pristane; PAHs; and n-alkanes. Many of the other 
compounds had only one or two experimental half-lives, and the level of uncertainty in the 
recommended half-life was greater. Howard et al [2005] did not consider the lack of data to be 
particularly problematic for structures expected to biodegrade either very quickly (i.e., 1–15 d) or 
very slowly (i.e., half-lives greater than one year). However, for those compounds with moderate 
rates of biodegradation, the uncertainty in the recommended biodegradation half-lives has a more 
pronounced effect on the ultimate results of the modeling effort. Although a distribution of half-
lives would be more appropriate for describing the biodegradation half-life of a compound, in most 
cases insufficient data were available. Figure 24 shows the recommended experimental half lives 
versus the predicted half lives.  

Preference was given to field data when these were available. However, when field half-life data 
were considerably longer than those reported in grab-sample studies, a half-life from the grab 
sample studies was chosen. It was noted that this might not result in the best value, but according 
to the authors most compounds had only grab-sample data, and the preferred use of the grab-
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sample data in these instances resulted in a consistent relative ranking of compounds based on 
their half-life data.  

In many cases, insufficient data were available to support the use of fragments that, at least 
theoretically, are expected to affect the biodegradation rate. These fragments include alkanes in 
which secondary or tertiary structures at the ends of the molecules should prevent beta-oxidation 
from occurring or, in the case of cyclic or aromatic structures, in which any applicable alkyl 
groups had secondary or tertiary structure inhibiting the biodegradation of the alkyl group. 
Programming of such fragments for inclusion into the model was considered to be too difficult 
because of problems in interpreting the structure. Too few data were available for branched 
alkanes in general, and no data were obtained that would clarify whether a compound blocked at 
both ends but containing a methyl or ethyl group in the middle of the molecule would have a lower 
half-life than one without a methyl or ethyl group. Fragments in which the number of adjacent 
hydrogen atoms on aromatic or cyclic ring structures was specified also were unsuccessful because 
of a lack of data. In this case, it would be expected that different isomeric substitution patterns 
would affect the potential ability of microbes to attack the underlying ring structure. Below the 
performance of the BIOHCWIN model in comparison to measured data will be discussed. More 
recently the degradation half lives of petroleum compounds in unacclimated fresh surface water 
and seawater were investigated [Prince et al, 2007 and 2008, CONCAWE, 2009], using purge-and-
trap and extraction methodologies, both coupled to GC/MS, and hexachloroethane and 
hexachlorobenzene as conserved internal markers. Also these half lives will be compared with 
those calculated with BIOHCWIN.  
 

 

Figure 24.  Comparison of the (recommended) experimental and estimated log half-life for the 121 
training set compounds by BIOHCWIN 

 
n-alkanes 
It appears that the recommended primary biodegradation half-lives for the n-alkanes were not 
linear. For this reason two fragments were added to the BIOHCWIN model to correct for the 
nonlinearity of the n-alkane experimental biodegradation data. Despite the addition of these 
corrective fragments, it becomes apparent, as illustrated in Figure 25, that the model in general 
underestimates the environmental half lives of the longer n-alkanes, starting from n=12; docosane 
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and up to n=30; triacontane. This limitation of the model was also acknowledged by Howard et 
al.[2005]. In comparison to the data obtained by Prince et al [2007, 2008], the predicted half lives 
by BIOHCWIN are lower for the short-chain alkanes (i.e. butane, factor 4;  pentane, factor 2,5 -7; 
hexane, factor 1.5), but increasingly higher for the long-chain (i.e. octane, factor 1.5; undecane, 
factor 3.5; heptadecane, factor 11) 
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Figure 25.  Comparison of the HCBIOWIN estimated environmental half-life (in days) against the 
“recommended” half-life taken from the PhysProp database [PhysProp DB]. Individual data 
are presented in Annex I. 

 
n-alkenes 
Due to the limited information on the degradability of alkenes the performance of the BIOHCWIN 
model on this group of compounds could be not assessed. Only one alkene (C14) was part of the 
training data set.  
 
Branched alkanes 
Based on a comparison with experimental and predicted half lives it be concluded that the 
BIOHCWIN does not perform well for branched alkanes. For several branched alkanes the half 
lives were significantly under-predicted as shown in the Table 8. It was noticed that the data for 
the branched-alkanes class was particularly variable and appeared to be correlated to increased 
branching, particularly when it was present at both ends of the carbon chain. 

No corrections were made in the BIOHCWIN model to predict the degradability of compounds 
with quaternary carbons, particularly at an end site, or branched compounds with methyl groups 
successively located along the carbon chain, as it was considered not trivial to program the model 
specifically for compounds with these types of structures. Data for branched alkanes with more 
than 10 carbon atoms (i.e., norpristane, pristane, phytane, and squalane) showed that degradation 
may be non-linear, however the data were too limited to apply correction fragments to the longer-
chain branched alkanes within this structural class. Overall, care must be taken with branched 
compounds, as it seems their environmental half-lives are generally underestimated. 
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Based on the data obtained by CONCAWE, the half lives of the short chain branched alkanes are 
under-predicted with BIOHCWIN ((i.e. branched butanes (factor 4) up to pentanes (factor 1.5), 
whereas BIOHCWIN over-predicts the half-lives of the longer chain branched alkanes (generally a 
factor 2 to 4).  

Table 8.  Comparison of the measured and estimated half lives (BIOHCWIN) for an number of branched alkanes 
[Howard et al., 2005]  

 
compound measured half life reported 

by Howard (days) 
Measured half life 

reported by 
CONCAWE (days) 

Estimated 
half life 
(days) 

2,4-dimethylpentane 48  9.1 5.6 
2,3,3-trimethylpentane 53 13 10.3 
2,2,4-trimethylpentane 40 8.4 10.9 
2,3-dimethylhexane 26 7.5 6.6 
2,5-dimethylhexane 25 6.5 6.6 
1,2-dimethylcyclohexane 18 8.1 5.1 
 
 
 
Cycloalkanes 

Only measured data where available to assess the performance of the model for the 
monocycloalkanes. Although the predicted half lives by BIOHCWIN were lower than the 
measured half lives reported by Howard, overall they are comparable with the measured values 
reported by CONCAWE. For a limited number of compounds, like for 1,2-dimethylcyclohexane 
the predicted DT50 values are lower than measured (see Table 8).  

The half-lives of the tricyclohexane compounds adamantane and diadamantane are very strongly 
underestimated (residual ~1000 days). As these are the only two tricycle compounds in the dataset 
(for which a recommended half life is available) it is likely that for this class of compounds the 
half-life in the environment will in general be grossly underestimated. Also the persistence of 
Perylene is underestimated significantly (residual 475 days, see Figure 26). However, based on the 
data obtained by CONCAWE, the BIOHCWIN model seems to predict the half lives in seawater 
within a factor of 2.  

Monoaromatics 

In general, the estimated half lives of the simple substituted benzenes (included mono-, di-, tri-, 
and tetramethyl as well as dimethylethyl, methylpropyl, n-propyl, isopropyl, and isobutyl groups) 
is rapid (<15 days) which corresponds well with the their experimental half-lives. The measured 
data in fresh water obtained by Prince et al. [2007] were in most case lower than those predicted 
by BIOHCWIN.  

For the linear long-chain alkylbenzenes (LABs) BIOHCWIN estimates longer half lives than the 
short alkyl chain benzenes as expected. However like for the n-alkanes there may not be a direct 
linear increase in DT50 with an increasing number of carbon atoms in the alkyl substituent and 
estimates will therefore be more uncertain and likewise underpredicted. This might also apply to 
branched LABs. BIOHCWIN model makes also no distinction between internal and external 
isomers of LABs, whereas several investigations showed that external LAB isomers are more 
rapidly biodegraded than internal LAB isomers [Takada, 1990]. 
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Figure 26.  Comparison of the HCBIOWIN estimated environmental half-life (in days) against the 
“recommended” half-life taken from the PhysProp database, for all substances in the 
CONCAWE library which have recommended half-lives. Individual data are presented in 
Annex I. 

 

PAHs 

The biodegradation of PAHs has been reviewed in the EU RAR on CTPHT. In general the 
biodegradation rate decreases with increasing number of aromatic rings. According to Volkering 
and Breure [2003], two factors are considered responsible for the difference in degradation rate. 
First, the bacterial uptake rates of the compounds with higher molecular weight have been shown 
to be lower than the uptake rates of the low molecular weight PAHs. The second and most 
important factor is the bioavailability of PAHs, due to sorption on suspended organic matter and 
sediment. Since the Kow and the Koc are strongly correlated, high molecular weight PAHs will 
degrade slower than low molecular weight PAHs.  

Based on their analysis of the experimental data Howard et al. [2005] concluded that in general 
BIOHCWIN under-predicts the half lives of three-ring PAHs, i.e., the experimental versus 
estimated half lives was for fluorene 44 versus 15 d; phenanthrene 42 versus 15 d; acenaphthylene 
38 versus 7 d; acenaphthene 39 versus 19 d. For the higher ring PAHs the predicted half lives are 
closer to the experimental data and might even be over-predicted. When comparing the half lives 
suggested by Mackay et al. (1992), which were also used in the risk assessment of CTPHT, the 
half lives in water of the three ring PAHs are in the same order of magnitude whereas the half lives 
of the higher ring PAHs are over-predicted.  

However, the half lives in soil and sediment are underpredicted for all PAHs (see 
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Table 9) .  

Based on the available data methylation results in an increase in PAH half life C2-, C3-, or C4-
PAHs and therefore in BIOHCWIN a correction factor was added for methylated PAHs. For 
polycyclic aromatic hydrocarbons with alkyl substitutions other than methyls no additional 
corrections were made. The half-lives for benzothiophene, dibenzothiophene and its alkylated 
derivatives and C1-DBT, C2-DBT and C3-DBT naphthobenzothiophene were reasonably well 
predicted. The half lives of the alkyl-substituted naphthobenzothiophenes were, however, 
considerably underpredicted, i.e. the predicted half-lives for methyl-, dimethyl-, and trimethyl-
naphthobenzothiophenes are 16, 28, and 51 d versus 66, 87, and 125 d, respectively. This 
discrepancy occurs because the methyl substituent is being assessed as an aromatic mono-CH3 
(four or more fused rings). 

Biphenyls  

Only limited data are available, though the data for biphenyl and 4-methylbiphenyl were 
considered sufficient to add a separate fragment to the model. Whether this is appropriate to 
estimate the half-lives for multiple methylated biphenyls is difficult to determine, though based on 
the data obtained by Prince et al. [2007 and 2008] BIOHCWIN generally provides higher half 
lives in surface water than measured.  

Naphtheno-aromatic structures 

The few data available for this group were mainly for a small group of tetralins and several mono-
aromatic and tri-aromatic steranes. For the tetralins a corrective fragment was incorporated, though 
based on the half lives determined by Prince et al. [2007 and 2008] in surface water, BIOHCWIN 
under-predicted the half lives of tetralins (approx 1.5 versus 3.5 days).   

Evaluation 

For the simple structural molecules, like the linear alkanes up to C12, the mono-aromatics and 
PAHs, the BIOHCWIN seems to give a reasonable prediction of half lives in surface water. 
However, for the more lipophilic and complex compounds, especially the branched petroleum 
compounds, the predictions are less certain and most often the half lives are under-predicted. 
Howard et al. [2005] also acknowledged that the available data were for relatively simple 
compounds, and that the BIOHCWIN should be used with caution in predicting half-lives for 
compounds that are considerably more complex. However, according to the authors the 
BIOHCWIN model should function well for those compounds expected to be present in the 
greatest abundance in petroleum and related products, because these typically are compounds 
without great structural complexity. The validity of this statement will be discussed in work 
package 3.  
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Table 9. Comparison of the degradation half lives of PAHs between those used in the EU RAR for CTPHT [EU, 
2008] and estimates by BioHCWIN [Howard et al. 2005].  

 
Compound Water Soil Sediment BioHCWIN 

water/soil 

Days 

BioHCWIN 
sediment 

Naphthalene  4-13 (7) 42- 125 (71) 125 – 420 
(229) 

5.6 
22.4 

Acenaphthene 4-13 (7) 42- 125 (71) 125 – 420 
(229) 

19 
76 

Acenaphthylene 4-13 (7) 42- 125 (71) 125 – 420 
(229) 

31 
124 

Fluorene 13 -42 (23) 125 – 420 (229) 420 – 1250 
(708) 

15 
60 

Anthracene  13 -42 (23) 125 – 420 (229) 420 – 1250 
(708) 

12 
49 

Phenanthrene 13 -42 (23) 125 – 420 (229) 420 – 1250 
(708) 

15 
60 

Fluoranthene 13 -42 (23) 420 – 1250 (708) > 1250 191 764 

Pyrene  42- 125 (71) 420 – 1250 (708) > 1250 284 1136 

Benzo(a)anthracen
e  

42- 125 (71) 420 – 1250 (708) > 1250 344 
1376 

Chrysene 42- 125 (71) 420 – 1250 (708) > 1250 344 1376 

Benzo(a)pyrene 42- 125 (71) 420 – 1250 (708) > 1250 422 1688 

Benzo(b)fluoranth
ene 

42- 125 (71) 420 – 1250 (708) > 1250 285 
1140 

Benzo(k)fluoranth
ene  

42- 125 (71) 420 – 1250 (708) > 1250 285 
1140 

Benzo(ghi)perylen
e 

42- 125 (71) 420 – 1250 (708) > 1250 517 
2068 

Dibenzo(a,h)anthr
acene 

42- 125 (71) 420 – 1250 (708) > 1250 - 
- 

Indeno(1,2,3-
cd)pyrene 

42- 125 (71) 420 – 1250 (708) > 1250 349 
1396 
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Intermedia extrapolation factors for (bio)degradation 

Howard et al. [2005] did not make clear from which compartment the data were obtained and 
whether any differences in degradation between compartments were observed. Based on a 
comparative analysis of biodegradation data from grab samples by Boethling et al. [1995] the 
HBM tool applies an intermedia factor of 1:1:4 to the biodegradation half-lives in 
water:soil:sediment. It should however be noted that Boethling et al. did recommend to set the 
degradation rate in surface water equal to that in soil only for screening purposes. Based on their 
analysis the ratio between surface water and soil is 1.6. It should also be noticed that the data set 
used by Boethling et al. was very limited (n=14) in which only two petroleum compounds were 
included. Therefore we see no reason to deviate from the standard ratio 1 : 2  taken in the REACH 
guidance in the case that half lives in surface water are sufficiently reliable. This ratio should then 
be further adjusted based on the Kp value (see table R16-8 of the REACH guidance). We also 
believe the data set for the extrapolation from surface water to sediment is too limited and not 
specifically related to petroleum compounds. Assuming that degradation of petroleum compounds 
is mainly due to aerobic processes, it seems more appropriate at this stage to apply a ratio of 1 : 20 
as applied in EUSES and recommended in the REACH Guidance, assuming that the fraction of the 
sediment compartment that is aerobic is only 0.1.  

 

Degradation half live estimates for activated Sludge waste water Treatment Plants 

In order to estimate the half lives in an STP, experimental total removal values from STPs were 
obtained from the open literature and used to back-calculate biodegradation half-lives using the 
SimpleTreat model [Aronson et al., 2005; Howard et al., 2005]. Based on a regression of these 
SimpleTreat-derived biodegradation half-lives and the BIOHCWIN biodegradation half-life the 
following equation was determined which was considered suitable for PetroRISK for the 
correction of environmental half-lives to an appropriate half-life in an STP: 

Log SimpleTreat biodeg T1/2(hrs)= 1.15 [log ENVbiodeg T1/2(hrs)] –2.56 Equation 1 

 
The selection of representative total removal values was based on a statistically-determined 
percent total removal value from the range of collected values. Selection based on characteristics 
of the operating plant was thought to be less representative in view of the limited information on 
the design and operation of the treatment plants and the influent pollutant loadings. The majority 
of the studies also reported very low influent concentrations.  

Percent total removal values reported as >0 to >89% were not used in the determination of a 
representative total removal value; only values reported as >90% or higher were included. These 
data show that for these compounds, the median percentage total removal value is generally higher 
than the average value. Therefore, when differences were large between these values a 
biodegradation half-life range was determined and the average was ultimately used in the 
regression analysis.  

For the back calculation two models were used: the STPWIN Model and SimpleTreat. The first 
model was not considered suitable because of the limited number of compounds on which this was 
modeled, which were also expected to exhibit rapid biodegradation in an activated sludge 
treatment plant. The SimpleTreat v3.11 model was run as a 9-box model (with primary 
sedimentation), surface aeration, and the assumption that biodegradation occurs in both water and 
solid phases (Method II).  
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It was noted that for several compounds, notably xylene, benzene, toluene, and ethylbenzene, it 
was difficult to derive an appropriate average half life in an STP. Even with the input of a first-
order rate constant of 0 hour-1, signifying no biodegradation, the lower total removal value for 
benzene, xylene, and toluene could not be reached by the SimpleTreat model.  For example, 
benzene had a median total removal value of 92.15% and a geometric mean value of 82.34%.  The 
input of 0 hour-1 as the rate constant into the model resulted in a total removal of 88.6% based 
solely on transport processes.  While the model was able to reach the lower total removal value for 
ethylbenzene, the model output showed that nearly 83% of the removal was due to release to air 
and this was not felt to be a reasonable estimation given the relative ease with which this 
compound is biodegraded under aerobic conditions. 

Data were most commonly found for compounds such as benzene, toluene, ethylbenzene, xylene, 
and several PAHs. A major weakness of the collected data is the presence of only a single data 
point for 58 of 88 compounds. Of the 58 compounds with only a single total removal value in an 
STP, 51 of 58 compounds had total removal values >99% and only 2 of 58 compounds had 
removal values <90%.  In comparison, there were 103 values for the total removal of toluene in an 
activated sludge plant.  These values ranged from 0 to 100% removal and median and average 
values of 95 and 85% total removal, respectively, were calculated from these data.  

In order to determine whether SimpleTreat was adequately estimating the biodegradation of a 
compound in an activated sewage treatment plant, a comparison was made of the SimpleTreat 
estimated data with experimental data where researchers had measured removal in terms of 
individual processes. If the model is working well, these data would be expected to be similar.  
However, only 6 of 88 compounds in the database had information on removal separated by 
process. Based on this analysis (see appendix) the authors concluded that using SimpleTreat as a 
means to obtain biodegradation rate constants from experimental total removal values is a 
relatively crude process. However, very few compounds have experimental data separating 
individual loss processes and the available data suggest that using total removal values to back-
calculate biodegradation half-lives is reasonable in most cases.   

Only for a limited number of compounds both SimpleTreat and environmental biodegradation 
half-lives were available. The equation shown above was finally based on 22 compounds (see 
Figure 27). The majority of these compounds were monoaromatics and PAHs.  

 

Evaluation 

The method to derive half lives in an STP based on half lives in the environment has a number of 
weaknesses which creates a large uncertainty in the determining the fate of petroleum compound 
in an STP and consequently in the estimation of the local surface water concentration when 
petroleum compounds are indirectly discharged via an STP.  

First, the final data set on which the equation is based is very limited: the majority of the 
substances were monoaromatics and PAHs. Unfortunately, we do not have excess to the raw data, 
but the data point look very scattered, which means that the confidence limits should be high. 
Furthermore, no branched compounds were included which are known to degrade slower than the 
unbranched compounds. As discussed above, BIOHCWIN might underestimate the degradation 
half lives of the short chain alkanes and branched alkanes and consequently also the half lives in 
the STP are likely to be under-predicted.  

Second, the validation of the predicted half lives in the STP was limited to only a few compounds, 
all having a relative low log Kow (i.e. benzene (log Kow 2), toluene (log Kow 2.5), ethylbenzene 
(log Kow 3.1), xylene (log Kow 3.1), Naphthalene (log Kow 3.3), anthracene (log Kow 4.7)). 
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These compounds are not expected to adsorb to sludge as strong as compounds with a log Kow > 
5. Therefore there is little evidence that the back calculation would also fit for compounds where 
the total removal will be much more determined by adsorption to sludge. 

Third, the variability of the removal of the substances that were used to validate the predicted half 
lives in an STP was in most cases very high (i.e benzene, toluene, ethylbenzene, xylene). It is 
therefore somewhat surprising that precisely based on these compounds it was concluded that this 
approach can provide a reasonable estimate of biodegradation in a sewage treatment plant. 

Overall, based on the data available it is difficult to estimate to which extent the half lives in the 
STP could be underpredicted by the Petrorisk model. At present the approach is considered too 
premature and too crude to provide reliable half lives in an STP.  

Alternatively, for those substances where reliable half lives in surface water can be predicted a 
ratio of 1 : 21 would be preferred, as indicated in the REACH guidance (see section R16.4.4.4 and 
R16.4.4.5). This is based a.o. on differences in microbial activity, corresponding to the dotted line 
in Figure 27 (the solid line is related to the proposed equation of Aronson et al. [2005]).   
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Figure 27.  Comparison of SimpleTreat estimation STP half-lives against environmental half-lives in the 
aqueous compartment. The solid line represents equation 1, used in the HBM tool. The 
dotted line represents the ratio between STP half-life and aqueous compartment half-life as 
suggested by the TGD2003 and REACH Guidance (see Annex 1). 

 
The difference between the two lines is approximately an order of magnitude (~1:220 as assumed in 
HBM vs. 1:21 as assumed in the REACH guidance), leading to a tenfold underestimation in the HBM 
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tool of the half-life in an STP. Although this does not directly translate to a 10-fold lower concentration 
in the fresh water compartment, it does have a very significant influence on the calculated PECs. 
 

Atmospheric half life 

Van der Meent [2008] uses the reaction rate constant for reaction with OH-radicals to calculate a 
half life in hours, assuming a (24 hour average) concentration of 5E5 OH-radicals/cm3 (as has 
been determined through back-calculation from the reported half-lives in the HBM tool). The 
value of the rate constant used is the experimental rate constant if this is present in the PhysProp 
database, otherwise the AOP1.92a (sep 2008) QSAR model is used to generate a prediction. 

The AOP program allows the user to select 12 or 24 hour time frames and any average hydroxyl 
radical concentrations, but the default is originally set at 1.5 x 106 molecules (radicals)/cm3 per 
12-h of daylight. Twelve hour daylight OH radical concentrations are reasonable for fast reacting 
chemicals but for chemicals that react more slowly (> a few days) 24 hour averages might be more 
appropriate. Atkinson [1985] suggested seasonally and diurnally 24 hour averaged hydroxyl 
radical concentrations at 298 K of: 

       5 x 105 molecules/cm3 in the northern hemisphere, and  
       6 x 105 molecules/cm3 in the southern hemisphere 
 

In the HBM the more conservative value (leading to longer half-lives in the atmosphere) for the 
OH-radical concentration in the atmosphere of 5x105 molecules/cm3 has been chosen. 

Atmospheric degradation due to ozone degradation (of relevance specifically for olefins and 
acetylenes) is also taken into account, using a 24-hour average concentration of ozone molecules 
in the atmosphere of 7 x 1011 O3/cm3. An experimental value for the rate constant for reaction 
with ozone is used if present in the PhysProp Database, otherwise the AOP v1.93a (sep 2008) 
QSAR estimate (for olefins and acetylenes only) is used. 

Degradation due to reaction with NO3-radicals (nighttime atmospheric degradation) is not taken 
into account. 

No comparison of the half-lives in the atmosphere with actual observed half-lives has been made, 
as such observed data is not available. 
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3.1.5 Uptake routes  

The uptake of nonpolar organic chemicals with Log Kow < 5 by fish is primarily from the water 
(via the gills), while it can be assumed that for substances with a log Kow > 5, which are not 
metabolised, uptake from environmental sources other than water (e.g food and sediment) might 
contribute to the bioaccumulation in higher organism. The same is likely true for benthic 
invertebrates [Belfroid et al., 1996; Loonen et al., 1997; Meador et al., 1995; Neff, 2002]. In order 
to take the uptake route via ingestion of sediment and soil particles into account, an additional 
safety factor of 10 for very hydrophobic compounds is often used when assessing the risk for soil 
and sediment dwelling organisms based on equilibrium partitioning (EP) [ECHA, 2008]. 

 Due to their hydrophobic nature, petroleum compounds (including PAHs) have a low aqueous 
solubility and a high affinity for adsorption to soil and sediment organic matter and are therefore 
preferentially associated with carbon phases of particles. The extent to which petroleum 
compounds accumulate in a sediment- or soil dwelling organisms depends primarily on the ratio of 
the petroleum compounds uptake rate to the depuration rate, the capacity of the organism to 
metabolize petroleum compounds, the mobility and habitat of the organism, and various 
physicochemical properties of the individual compounds.  

Hydrocarbons in solution in sediment porewater are more bioavailable and toxic to sediment-
dwelling organisms than hydrocarbons adsorbed to sediment particles. For low molecular weight 
hydrocarbons (log Kow < 5.5) with high solubility, sufficient levels of hydrocarbons are present in 
the porewater to allow rapid bioaccumulation across external permeable membranes or across the 
gut epithelium when particles and pore water are ingested. In the gut, “solubilization” of 
particulate hydrocarbons is aided by surfactants and enzymes secreted by the animal [Mayer et al., 
1996]. Voparil et al. [2004] showed that the gut fluids of A. marina solubilize much greater 
concentrations of PAHs from some anthropogenic particles than are available to water. This 
enhanced exposure likely is due to surfactant micelles in the digestive fluids of this animal. For 
high molecular weight hydrocarbons (log Kow> 5.5) with low solubility and high affinity for 
particles, few hydrocarbons are able to partition from the particles into bulk pore water. However, 
if hydrocarbon-contaminated sediment particles come into direct contact with permeable epithelia 
(e.g., gill, gut epithelium), some high molecular weight hydrocarbons may dissolve in the thin film 
of water between the particle and membrane surfaces and partition into the membrane.  

In theory gastrointestinal uptake can lead to body residues greater than those predicted by 
Equilibrium Partitioning (EP) due to an increase in the fugacity of the chemical in the GIT, caused 
by a decrease of the sorption capacity of the food upon passage through the GIT (digestion of 
sorption sites: lipids and organic matter) and compaction (a decrease in the volume of the gut 
contents due to food absorption). Whether this process actually leads to greater body residues 
depends on the magnitude of the fugacity increase and the magnitude of the elimination rate in the 
feces compared to the other elimination routes [Gobas et al., 1993]. It is often assumed that EP 
concerns only uptake from pore water through the skin. However, Jager [2003] argued that the fact 
that steady-state body residues are not expected to deviate too much from the EP estimate does not 
mean that the route across the gut wall is not important. In fact, his data with Eisenia andrei 
showed that the gut route was the dominant route of exposure. The same conclusion was drawn for 
PAHs in sediment oligochaetes [Leppänen and Kukkonen, 1998; Lu, 2004].   

Jager [2004] explained that the highest deviation from EP in any species and for any chemical can 
be predicted when Organic Carbon (OC) digestion is high, elimination across the outer skin is 
slow (to keep the fugacity in the organism above that of the soil), and retention time is not too long 
(to ensure sufficient refreshment of the GIT). However, digestion and retention time are likely to 
be inversely related [Willows, 1992]. Thus, even though digestion may be high in a species like 
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the litter-feeding earthworms of deposit feeding sediment organisms, the long retention time may 
prevent the organisms from exceeding the equilibrium estimate. Geophageous species like A. 
rosea seem adapted to a lifestyle of eating their way through soil with a high throughput and a low 
digestion efficiency. This implies only a limited increase of the fugacity in the GIT and therefore a 
limited additional uptake via this route. Given the reported data for digestion and retention times, 
and using extreme values for the chemical-specific parameters, it is highly unlikely that body 
residues will exceed the EP estimate by a factor of 1.5 for any chemical or any species of 
earthworm.  

As mentioned in the EU RAR, the origin of the organic carbon to which the PAHs are associated 
may have its influence on the partition coefficients and the kinetic rate of desorption. In particular 
combustion soot or nonaqueous phase liquid, such as petroleum, creosote, or tar are known to 
reduce the bioavailability of the organic compounds such as PAHs [DiToro et al., 1991; Hansen et 
al., 2003; Thorsen et al., 2004, Neff et al., 2005]. In this way, strong sorbing carbonaceous 
materials may limit the bioavailability of PAHs to soil and sediment species more than amorphic 
organic carbon does, on average. Especially the role of carbonaceous materials such as black 
carbon, coals and kerogen is subject of discussion. This has been reviewed extensively by 
Cornelissen et al. [2005] and Koelmans et al. [2006]. The higher partition coefficients to black 
carbon indicate that soot-like materials may have a major influence on the bioavailability to soil 
and sediment species. The effect of the sorption to carbonaceous materials on uptake of PAHs by 
biota is still unclear. Where some studies show that uptake of PAHs is significantly decreased in 
the presence of carbonaceous materials, others show that this effect is not present or negligible 
(see for more information the EU RAR on CTPHT). 

The last years, more evidence becomes available that sorption of organic chemicals into soils and 
sediments can be better described by a two-phase model. This model assumes that two main types 
of organic carbon exist: amorphous organic carbon, with a linear sorption, and black carbon (or 
carbonaceous geosorbents) with non-linear (Freundlich) sorption [Cornelissen et al., 2005]. A 
model to describe a two-phase system is that of Bucheli and Gustafsson [2000] and Accardi-Dey 
and Gschwend [2003]: 

  )1(  n
DissolvedBCBCPOCPOCPM PAHfKfKK  

From several studies [Burgess et al., 2004; Lohmann et al., 2004; Vinturella et al., 2004; Jonker 
and Koelmans, 2001] it appears that the partition coefficients to soot-like particles (black carbon) 
(KBC) are much higher than the partition coefficients normalised to the total of organic carbon in 
the sediment or soil (Koc). These values for KBC are a factor of 10 to 59 higher than the values used 
in the risk assessment, except from the data by Jonker and Koelmans [2001], which are 59 times 
higher than the values used in the risk assessment, but only 3.5 to 22 times as high as the Koc 
values for amorphous organic carbon determined in the same way. Overall, the partitioning to 
carbonaceous materials can be up to 60 times higher than the partitioning to the commonly used 
organic carbon.  

Overall, we believe that when toxicity data for sediment and soil organisms are not available these 
can be estimated from the aquatic toxicity data using equilibrium partitioning based on the Koc 
values derived with the one-phase model proposed by Karickhoff et al. [1979], which incorporates 
field-derived sediments with mixtures of all types of organic carbon (including both black carbon 
and amorphous organic carbon). Based on the conservative nature of these Koc values (lower Koc 
values, resulting in a higher bioavailability) and the arguments given by Jager, the use of an 
additional assessment factor for substances with a log Kow > 5 could be reconsidered. As this will 
not affect the RA of petroleum compounds only, this needs to be discussed in a broader context of 
REACH guidance before a decision can be made to deviate from the current guidance. 
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Biomagnification  

The risk for secondary poisoning of petroleum compounds in the HBM model is based on the 
same approach as recommended in the REACH guidance. The risk to (marine) predators is 
calculated as the ratio between the concentration in their food (marine) fish and the no-effect 
concentration for oral intake (PNECoralpredator). The concentration in the fish (Cfish) is obtained 
from the BCF and for very hydrophobic substances an additional biomagnification factor (BMF) 
as a result of bioaccumulation from the food the fish consumes (which consists of different types 
of aquatic organisms). To assess the risk to marine top-predators an additional biomagnification 
factor (BMF2) is applied.  

By establishing these factors it is assumed that a relationship exists between the BMF, the BCF 
and the log Kow. Although this might still be valid for water-respiring organisms, more and more 
information becomes available that in air-breathing animals biomagnification also occurs with 
hydrophobic chemicals (e.g., chlorobenzenes, lindane and perfluorinated sulfonic acids), with log 
Kow < 5 and with BCFs in fish-based experiments below the regulatory criterion of 5000. These 
findings indicate that very hydrophobic chemicals with a log Kow ≥ 5 are not the only chemicals 
with biomagnification potential and that lipid-water partitioning does not serve as a universal 
model for identifying bioaccumulative substances in wildlife and humans. As indicated by Kelly et 
al. [2007], in water-respiring organisms, elimination becomes sufficiently slow to cause 
biomagnification if the log Kow of the chemical exceeds ~5. In the air-breathing organisms, this 
occurs for chemicals with a high log Koa (≥6), which causes slow respiratory elimination, and a 
log Kow > 2, causing slow elimination in urine or nitrogenous wastes. Although these findings 
have not yet been implemented in the REACH guidance, it was considered worthwile to 
investigate whether the CONCAWE library contain petroleum compounds which might not 
biomagnify based on their log Kow but do have a log Koa > 6 which give them the potential to 
biomagnify in air-breathing animals. 

A biomagnification factor (BMF) is used to account for accumulation through dietary uptake for 
aqueous species in the CONCAWE HBM (variable named BMF1 in the HBM). Biomagnification 
for airbreathing mammals is taken into account using the same biomagnification factor (variable 
named BMF2 in the HBM). 

 The assumptions made for accounting for biomagnification in the HBM model are as follows: 

if  BCF< 2000     then  BMF =  1  
if  2000> BCF >5000 and log Kow < 8  then  BMF =  2  
if  2000> BCF >5000 and log Kow > 8  then  BMF =  3  
if  BCF > 5000     then  BMF = 10 

 

This is according to the REACH Guidance recommendations, and the same assumptions are 
implemented in EUSES. 

The number of substances in the CONCAWE library of 1518 substances that fulfill these different 
criteria are:  BMF=1  1055 substances 

BMF=2  193 substances 
BMF=3  0 substances 
BMF=10 270 substances 
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Should Koa be accounted for in biomagnification for air-breathing species? 

The BMF as a property which could serve to indicate potential bioaccumulation in air-breathing 
mammals on higher trophic levels (BMF2 in the HBM), is often regarded to be a function of the 
octanol-air partitioning coefficient [Kelly et al., 2007]. The quantitative relationship derived by 
Kelly et al. [2009] is: 

  2.46log0.13log753.0 2  oaoa KKBMF  

This Koa dependent BMF is visually compared to the BMF value used in the CONCAWE HBM 
(the BMF2) in Figure 28  
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Figure 28.  BioMagnification Factor (BMF) as estimated based on Kelly et al. [2009] versus BMF as 
applied in the HBM tool, and as recommended in TGD2003 and REACH Guidance. Individual 
data is presented in Annex I. 

 
It is observed that substances in the CONCAWE library with an assigned BMF of 1 are calculated 
to have BMFs calculated from their (estimated) log Koa anywhere between 1 and 10. The same is 
true for substances with an assigned BMF of 2 and 10.  

Kelly et al. [2007] state that there should be an extra concern for those substances with high log 
Koa (i.e. > 6), but log Kow below 5 (but still above 2). By examining both the log Koa and log 
Kow values of all substances in the CONCAWE library it is determined how many substances in 
the library would give rise to this extra concern for biomagnification in air breathing animals. As 
can be seen in figure 29, there are few substances with these specific properties.  
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Biomagnification potential for CONCAWE library
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Figure 29.  Octanol-air partitioning coefficient against the octanol-water partitioning coefficient for the 
complete CONCAWE library of 1512 substances. In the graph the area of concern [Kelly et al. 
2007[ is indicated, as well as the areas of high biomagnification potential. 

 
 
In effect there are 16 substances (~1%) in the 1518 substance library which have log Koa>6 and 
2<log Kow<5, the borders specifically mentioned by Kelly et al [2007]. These 16 substances, with 
their calculated BMF based on the equation from Kelly et al. [2009] are given in Table 10. 
 
The substances mainly concern PAHs (anthracene, phenantrene, fluorene acenaphthene, 
substituted naphthalenes, pyrene), one biphenyl and one highly substituted benzene. The estimate 
of the BMF based on log Koa from Kelly et al. yields an estimated average BMF for these 
substances of 6.85. It seems that for the polyaromatic hydrocarbons in general the HBM tool (but 
also risk assessments performed with EUSES) might give rise to an underestimation of their 
bioaccumulating behaviour in air breathing mammals and/or at higher trophic levels. 
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Table 10.  16 substances from the CONCAWE library with log Koa>6 and 2<log Kow<5, which could 
give rise to added concern about their biomagnification behaviour in air breathing mammals. 

 
Nr. BMF HBM BMF Kelly Substance Name    
1  1  4.88  Acenaphthene                                      
2  1  6.75  Fluorene                                          
3  1  4.84  2-Ethylnaphthalene                                
4  1  8.45  Dibenzothiophene                                  
5  1  4.70  2,4-Dimethylnaphthalene                           
6  1  4.78  2,8-Dimethylnaphthalene                           
7  1  8.13  Anthracene                                        
8  1  8.41  Phenanthrene                                      
9  1  8.93  Naphtho[21b]thiophene                             
10 1  5.84  1,2,3,4,5-Pentamethylbenzene                      
11 1  6.02  4-Methylbiphenyl                                  
12 1  5.70  2,3,6-Trimethylnaphthalene                        
13 1  5.70  2,3,7-Trimethylnaphthalene                        
14 1  9.89  4-Thiacyclopenta[def]phenanthrene                 
15 1  9.76  Pyrene                                            
16 1  6.82  1,2,3,4,5,6-Hexamethylbenzene                        
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3.2 WP2. Target Lipid Model 

3.2.1 History and overview of the target lipid model 
The target lipid model (TLM) was developed by Di Toro and co-workers [Di Toro et al 2000a, b]. 
The model is a QSAR based model for narcosis type of chemicals that is based on the general 
accepted assumption that partitioning into lipophilic tissues such as cell membranes (the target 
lipids) is the determining factor in the toxicity of this type of chemicals. It was assumed that 
partitioning in target lipids is the same for different species. The difference in sensitivity for 
different species is related to the concentrations in these target lipids species at which critical 
effects occur, i.e. the critical target lipid body burden (CTLBB). 

The approach that is followed is shortly described here. Log-transformed acute toxicity data for 
several species and compounds are expressed as a function of log Kow with an equal slope but with 
(possibly) different intercepts for each species. On top of that, some correction factors were fitted 
for a few chemical classes that were slightly more toxic than standard baseline toxicants (narcotic 
chemicals). The intercept is regarded as the logarithm of the CTLBB. 

In the original version of the target lipid model, a final acute value (FAV) is derived from the 
genus mean acute values (GMAV) from the set of CTLBBs for 33 species. Only for one genus 
(Daphnia) more than one species was available. Therefore, the final acute value of 
35.3 µmol/goctanol is the 5th percentile of 31 genera. The final chronic value (FCV) is derived from 
the final acute value by dividing it by the acute to chronic ratio (ACR). For this purpose, the 
geometric mean of the presented ACRs. It should be noted that this value could not be exactly 
reproduced from the data presented (geometric mean of 4.97 instead of 5.09). 

In later publications, the derivation of an acute and a chronic HC5s (hazardous concentrations to 
5% of the species) was introduced [McGrath et al 2004; Redman et al 2007; McGrath and Di Toro 
2009]. The acute HC5 for a substance with a certain log Kow was calculated from the species 
sensitivity distribution (SSD) based on the CTLBBs and product of the log Kow and the universal 
slope for narcosis in combination with the variances herein. For the chronic HC5 this calculation is 
extended with the ACR and its variance. The equation used to calculate HC5s is: 

Equation 2 

           
          ACRVCTLBBVslopeVKk

ACRECTLBBEslopeEKHC

logloglog

loglogloglog

2
owZ

ow5




 

 
In this equation E represents the mean and V the variance of the bracketed parameters. In the cited 
studies C*

L is used as alternative for CTLBB as well, but this is the same parameter. The parameter 
kZ is the extrapolation constant that is used in statistical extrapolation to arrive at the HC5 value. 
By applying this equation, it is assumed that the universal slope for narcosis, CTLBBs, and the 
ACR are independent of each other. This assumption will be further evaluated below for the 
combination of the universal slope and the CTLBBs. In this equation the chemical class correction 
(Δci) is not included. In McGrath et al. [2004] it is introduced as a fixed parameter to correct the 
HC5. It could be argued if this is correct and if the variance in the chemical class correction should 
be included in the calculation as well. 
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The model was subject to development over the years. Addition of new data changed the values of 
the parameters used in the model. It is clear that such an update of the model will result in different 
HC5s as well. As shown in Table 11, the height of the acute to chronic ratio and the correction 
factor for the chemical classes are the parameters that were subject to the biggest changes. 

The acute to chronic ratio was initially based on data for all baseline toxicants, except algae [Di 
Toro et al 2000a] which resulted in a geometric mean value of 5.09. Then, some data for algae 
were added, reducing the geometric mean to 4.47. By taking only aliphatic hydrocarbons, 
monoaromatic hydrocarbons and polycyclic aromatic hydrocarbons into account, the geometric 
mean of the value was reduced to 3.83. Because of the lower number of ACRs (29), the 
extrapolation constant kZ was raised to 2.30. Remarkably, this higher value for kZ was used by 
Redman et al. [2007] as well, although the old value of 4.47 for the geometric mean of the ACR 
was still used. 

Table 11.  Development of the parameters of the target lipid model. Parameters are presented as mean 
± standard deviation 

Parameter Di Toro et al. 
2000a 

McGrath et al. 
2004 

PetroTox 
User’s guide 

Redman et al. 
2007 

McGrath and 
Di Toro 2009 

Universal slope -0.945±0.014 -0.945±0.014 -0.936±0.015 -0.936±0.15 -0.936±0.015 
Final acute value 35.3 36.2    
Final chronic value 6.94     
mean CTLBB a  137  119.0 119 
log CTLBB  2.14±0.28 2.13±0.12 2.076±0.335 2.076±0.335 
ACR a 5.09±0.95 4.47 4.47 4.47 3.83 
log ACR  0.650±0.392 0.650±0.355 0.650±0.283 0.583±0.323 
Extrapolation constant fifth percentile 2.21 2.21 2.30 2.3 
Corrections (log basis)      
Aliphatic 0 0  0 0 
Alcohol 0 0  0 0 
Ketone -0.245±0.059 -0.245  0 0 
Ether 0 0  0 0 
Halogenated -0.244±0.033 -0.244  -0.339 -0.339±0.032 
PAH -0.263±0.057 -0.263 -0.352 -0.352 -0.352±0.053 
Monoaromatic 0 0 -0.109 -0.109 -0.109±0.034 

a These parameters represent geometric means. 
 
In Di Toro et al. [2007] the same values for the parameters of the target lipid model are used as in 
Di Toro et al. [2000a]. In the PetroTox program file the data from the updated target lipid model 
[McGrath and Di Toro 2009] have been used. However, the variances of the ACR and the CTLBB 
are switched erroneously in the PetroTox model. This is probably caused by the order in which 
they occur in the equation presented in the original study [McGrath and Di Toro 2009]. The 
variance 0.105 (s.d. 0.323) refers to the 29 presented ACRs and the variance 0.112 (s.d. 0.335) 
refers to the set of 47 CTLBBs.  

The values in the PetroTox model are partly deviating from the values reported in the PetroTox 
user’s guide. The value for the universal slope from the user’s guide is the value from the updated 
version from McGrath et al [2009]. However, the values for CTLBB and ACR are from the former 
model described by McGrath et al [2004]. The variance of the CTLBB in the user’s guide is 
probably a typing error (0.015 instead of 0.105, i.e. standard deviation of 0.12 instead of 0.28). 
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Because the mean and variance of the universal slope, the CTLBB, the ACR and the extrapolation 
constant are parameters that are fixed in the model, it is evident from Equation 2 that the HC5 is in 
fact solely dependent on the log Kow. Thus, for any substance or hydrocarbon block, the log Kow 
alone is sufficient to determine the HC5. 

3.2.2 Mixture toxicity and additivity 
 
Considering that a range of petroleum compounds are emitted simultaneously, there is reason to 
assess the risk for the mixture and not for the compounds individually. In principle the use of 
concentration additivity is the correct method if substances of the mixture have the same mode of 
toxic action and any other interactions are absent. It is assumed that this is the case for petroleum 
mixtures and other mixtures consisting of baseline toxicants. Therefore, this method has been 
applied in the target lipid model. It has the additional advantage that it can be applied in a simple 
way by applying the toxic unit approach. A toxic unit (TU) is defined as the ratio of the 
concentration in a medium to the effect concentration in that medium. The toxicity of the mixture 
is the sum of the individuals TUs. Use of the toxic unit concept requires that the dose-response 
relationships of the individual compounds have similar shapes, which in general holds for 
compounds with the same mode of action. The additivity of the toxicity of narcotic chemicals has 
been demonstrated by a number of investigators before and has been applied in the target lipid 
model [Di Toro et al., 2000a,b; McGrath et al., 2005; Di Toro et al., 2007 ; DiToro & McGrath, 
2009]. 

If substances have a dissimilar mode of toxic action, it would be theoretically more correct to 
apply response addition instead of concentration addition to the data. However, the differences 
with concentration addition are in general small, and generally concentration addition yields 
slightly more conservative estimates [Kortenkamp et al., 2009]. Therefore, from a policy point of 
view, concentration addition could be supported. Apart from that, concentration addition seems 
indeed to be the right model to apply to petroleum substances, given their apolar, non-specific 
toxicity in most cases. 

3.2.3 Phototoxicity, enhanced toxicity 
It can be assumed that toxicity of a large number of petroleum components is mainly caused by 
narcosis or baseline toxicity. On the other hand phototoxicity is also observed for different 
petroleum mixtures, which is most likely due to the presence of PAHs which are known to exert an 
enhanced toxicity due to this mode of action. For example, the toxicity of four petroleum products 
to larvae of the bivalve Mulinea lateralis and juveniles of the mysid shrimp Mysidopsis bahia was 
enhanced under ultraviolet light. This effect was limited in the lightest of the four products, 
probably due to the absence of PAHs in this product [Pelletier et al 1997]. In another study most 
of 22 petroleum products appeared to be phototoxic to Daphnia magna. Again the presence of 
phototoxic PAHs explained the occurrence of phototoxic effects [Wernersson, 2003]. For the newt 
(Pleurodeles waltl) genotoxicity of an oil refinery effluent was enhanced due to the presence UV 
light [Fernandez & L‘Haridon, 1994].  

However, it appeared that the chronic toxicity of PAHs under less extreme phototoxic conditions, 
closer to real environmental conditions, is at the same level as the most sensitive phototoxic effects 
[Verbruggen 2012], see also Figure 33 in section 3.2.4 on the Validation of the Target Lipid 
Model. Therefore, provided that the chronic toxicity is correctly determined (in the case of the 
target lipid model, the data underlying the ACRs should be sufficiently protective), then this would 
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also sufficiently cover the phototoxic effects of petroleum products.Validity of the model for the 
risk assessment of aquatic organisms 

Adaptation of the target lipid model in PetroTox 
In order to account for the reduced uptake of very hydrophobic chemicals (log Kow>6) the 
PetroTox model applies a correction factor. It is stated in the user’s guide that the membrane-water 
partition coefficient (Kmw) is equal to the Kow up to a log Kow of 6, but in principle this is not 
correct. In the target lipid model  (McGrath & Di Toro, 2009) the partition coefficient to target 
lipids (KLW), which can be considered to correspond with Kmw, is 0.936 · log Kow. In the target lipid 
model the slope of 0.936 accounts for the fact that partitioning to target lipids is not equal to 
partitioning to octanol. In the PetroTox model, a correction to this slope between log Kmw and log 
Kow is made for highly hydrophobic substances. No correction is made until a log Kow cut-off of 6, 
i.e. Kmw = 0.936 · log Kow until log Kow 6. Thereafter, the log Kmw stays virtually constant with a 
slope of 0.037 · 0.936 instead of 0.936. This is indeed in accordance with the statement from the 
PetroTox user’s guide that log Kmw is in between 5.5 and 6.0 even at very high log Kow values. No 
information is given on the origin of the value 0.037. 

In Figure 30 this relationship between log Kmw and log Kow is depicted. It appears that the 
estimated log Kmw by PetroTox is indeed closely following the experimental data for membrane-
water partition coefficients that were summarized before [Verbruggen 2004; Verbruggen et al 
2008]. In contrast to these publications, PetroTox does not use a continuous function for log Kmw, 
but instead uses a cut-off at log Kow 6. As a consequence, the relative toxicity of substances with a 
log Kow of 6.5 to 9 could be slightly underestimated (up to a factor 2.5). According to personal 
communication with CONCAWE, this cut-off level has been raised in the PetroRisk model, which 
would results in higher Kmw values for the highly hydrophobic substances.   
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Figure 30.  Partition coefficients to artificial dimyristoylphosphatidylcholine membrane vesicles (KMW) as 
a function of n-octanol-water partition coefficients (Kow) from Verbruggen et al 2008 with —— 
best fit polynomial function;  – – – PetroTox; ------- Verbruggen et al 2000b. 
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The justification of such deviation from linearity is difficult. Several explanations can be given, 
including experimental artifacts. However, it should be noted that for the assessment of 
bioaccumulation within the context of the PBT assessment within REACH a similar plot was 
constructed based on data from bioaccumulation tests [see REACH guidance R11 and section on 
bioaccumulation of this report]. These data show a similar pattern, but the maximum value is 
already obtained at log Kow 6.6, while the membrane-water partitioning peaks at log Kow 7.7 (see 
Figure 30). In general, it seems justified to state that accumulation of extremely hydrophobic 
substances is limited and that the linear relationship with log Kow breaks down at some point. 

To calculate a chronic HC5 in the target lipid model the uncertainty (variance) in the universal 
slope for narcosis is needed. The modification in the PetroTox model results in a slope different 
from the universal slope for narcosis in the range up to log Kow 6. It is not mentioned how the 
uncertainty in the slope is calculated for substances with a log Kow in excess of 6. 

 

Calculation of critical internal concentrations 
In the TLM the internal concentrations are used as a metric for toxicity. This assumption is one of 
the key aspects for narcosis type of toxic action. To calculate the critical target lipid body burden, 
the logarithm of the LC50s is plotted as function of log Kow. The assumption is that the intercept in 
this plot is equal to the critical target lipid body burden (CTLBB), which is only true if the 
intercept of the relationship between log KLW and log Kow is zero. 
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Figure 31.  Ratio between experimental critical target lipid body burden and values predicted values by 
the target lipid model. Chemical class corrections were applied to all values (0.458 for  
halogenated compounds, 0.445 for polycyclic aromatic hydrocarbons and 0.778 for 
monoaromatic compounds [McGrath et al. 2009]. Open symbols represent the values as 
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presented by McGrath et al. [2009]. Closed symbols are corrected 100.33 to account for the 
intercept between log Kow and log Kmw . 

For artificial membrane-water partition coefficients a higher intercept of 0.33 ± 0.05 was found 
[Verbruggen et al. 2000b]. It appears that the experimental values for critical body burdens as 
quoted by DiToro et al [2000a] after application of the relevant chemical class correction 
correspond better with the derived CTLBBs if these values are multiplied by 100.33. This is shown 
in Figure 31. 

In principle this is not particularly important for the concentrations recalculated to environmental 
media such as water. However, the fixation of the intercept between log Kow and log KLW has 
implications for the calculation of the HC5 if only the slope is assumed to vary, while variance in 
the intercept is neglected (see below on the evaluation on the equation to calculate the HC5). 

 

Validation of lethal loadings 

Lethal loadings (LL50s) are a measure of effect, i.e. 50% lethality, based on the loading of a 
product to water. Only a part of the loading will actually dissolve into the water. LL50s are used as 
a measure of toxicity in the framework of Classification and Labeling. 

Raoult’s Law is used to estimate oil-water partitioning. As such it is only used in the calculation of 
dissolved concentrations for systems where oil-water partitioning is important, e.g. laboratory 
toxicity tests with water accommodated fractions (WAF) and is mainly used in the hazard 
classification. When petroleum products are released in the environment, their compositions 
change. In the risk assessment of these products this is covered by fate modeling in the 
hydrocarbon block approach. PetroTox uses this calculation of aqueous concentrations by means 
of Raoult’s Law in combination with the TLM to calculate LL50s for petroleum products to 
different species. 

McGrath et al [2005] tested the accuracy of Raoult’s law for the six gasolines tested, by measuring 
BTEX and naphthalene in the water accommodated fraction. The analyses were compared to the 
estimated concentrations of C6 to C10 aromatic compounds (BTEX and naphthalene constitute at 
least two third of this fraction). The results showed a strong correlation, except in the lower 
concentrations, for which analytical detection was limited. The toxicity of water accommodated 
fractions of the six gasolines was tested with algae (Pseudokirchneriella subcapitata), water flea 
(Daphnia magna) and juvenile rainbow trout (Oncorhynchus mykiss). The water concentrations for 
the different hydrocarbon blocks estimated by Raoult’s Law in combination with the TLM yielded 
a very good correlation with the experimentally observed toxicity, especially after correction for 
volatilization to the headspace. PetroTox has an option to calculate volatilisation to the headspace 
as well. Inclusion of this option yields slightly less conservative results, but the data from McGrath 
et al. [2005] show that this is indeed an improvement in the prediction of toxicity. 

The use of Raoult’s law to calculate aqueous concentrations appeared to be useful in other 
experiments as well. It was for example applied to explain differences between toxicity of 
kerosene and gas oil to Daphnia magna [Verbruggen et al., 2001] and was also applied to 
calculate pore water concentrations in benthic toxicity experiments [Verbruggen et al., 2008]. 

The data from Foster et al. [2005] have been used in the validation of the TLM for gasolines in the 
study by McGrath et al. [2005]. It is stated that only if log Kow differed significantly from the 
values estimated by SPARC, the latter values were used, because SPARC was used in the 
development of the TLM. It is not clear why the SPARC estimates were not used on forehand. 
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For oil-water partitioning, a relationship between subcooled liquid solubility and log Kow has been 
used by McGrath and Di Toro [2009] that is strongly deviating from earlier derived values for total 
petroleum hydrocarbons, both aromatics and aliphatics [Verbruggen et al., 2008]. The 
consequence is that the estimated liquid solubility is up to orders of magnitude too high. However, 
also the tabulated values for solubility are erroneous by a factor of 1000. Therefore, there is most 
likely an error in the data presented. 

The correlation that is presented by Di Toro et al. [2007] between subcooled liquid solubility and 
log Kow is similar to the equation presented by Verbruggen et al [2008], except from the difference 
in unit for solubility (a factor 3 in intercept). Nevertheless, the correlation of the evaluated data in 
Verbruggen et al. [2008] is more accurate, while it covers a wider range at the same time. It is not 
clear from the data, whether this is caused by the use of tabulated and partly estimated data for 
subcooled liquid solubility by Di Toro et al. [2007], or the fact that Di Toro et al. [2007] have used 
SPARC to calculate log Kow, while Verbruggen et al. [2008] have used ClogP. However, the 
SPARC data from the CONCAWE library in PetroTox for log Kow and log subcooled liquid 
solubility show a straight line with an equal relationship between the two parameters as included in 
Verbruggen et al. [2008].  

PetroTox provides also the possibility to apply a bioavailability correction to the estimated water 
concentrations, because reduced bioavailability might lower the toxicity. However, the TLM is 
based on similar experimental data including similar organic carbon and biota loading as the lethal 
loading experiments to be simulated by the model. It will be evaluated below whether it is justified 
to apply such correction to the model outcome.  

It could be argued that this bioavailability correction applies only the highly hydrophobic 
compounds, while the model is constructed of compounds containing compounds of lower 
hydrophobicity. However, for a substance like n-nonane, which is within the domain of the model 
with a calculated log Kow of 5.301, the default bioavailability correction with 2 mg/L particulate 
organic carbon already results in a decrease in bioavailability of 24%. McGrath et al. [2004, 2005] 
indicate that the TLM has been validated for substances with a log Kow up to 5. In that case, n-
undecane falls within the domain of the model. For this substance with a calculated log Kow of 
6.419, the default bioavailability correction results in 80% decrease. 

Further, it should be noted that it are mainly the components in this range of hydrophobicity that 
contribute to the largest part to the toxic unit in a lethal loading experiment, because of their 
relatively high solubility and partitioning to the water phase [e.g. Di Toro et al., 2007; Verbruggen 
et al., 2008]. 

In the bioavailability correction, the presence of a possible third phase (small oil droplets) in the 
loading experiments might become relevant. Small oil droplets might serve as a replenishment of 
the highly hydrophobic substances, for which binding to organic carbon is most important. 

Overall, it can be concluded that the methodology of PetroTox gives accurate estimates of the 
LL50s for petroleum products and is considered adequate together with the TU units approach (see 
section 3.2.2) to determine the classification and labeling of petroleum mixtures.   

The bioavailability correction included in PetroTox should not be applied to calculate the lethal 
loading of a petroleum product. Further, the PetroTox user’s guide mentions the formation of 
dimers and trimers for highly hydrophobic substances. Formation of such di- and trimers results in 
an aqueous activity that is only a small part of the subcooled liquid solubility. No reference is 
given for this statement. In the user’s guide it is stated that this activity is input from the 
CONCAWE library. However, in the worksheet with the CONCAWE library in the PetroTox 
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model, there is no column with aqueous activity. It is therefore not clear if and how the PetroTox 
model deals with this reduced activity. 

SSD on acute data  
An evaluation of the most recent version of the TLM [McGrath & Di Toro, 2009] shows that the 
CTLBBs do not follow a log-normal distribution. Normality is rejected by all three goodness-of-fit 
tests included in the program ETX (Anderson-Darling, Kolmogorov-Smirnov, and Cramer von 
Mises tests) at the 0.1 and 0.05 significance level. The Anderson-Darling and Cramer von Mises 
tests reject the normal distribution at the 0.025 level as well. However, in our view this will 
probably have a minor influence on the overall risk characterization.  

Further, it should be noted that although the SSD contains 47 species, there is no higher aquatic 
plant (macrophyte) or blue-green algae (cyanophyte) included. Because higher plants belong to the 
eight taxonomic groups defined as minimum requirement to perform an SSD, this minimum 
number of taxonomic groups is thus not met according to the REACH guidance, although 
CTLBBs are present for almost fifty species. Here as well, this omission will probably have a minor 
impact on the overall risk. 

 

 

Figure 32. Species sensitivity distribution (SSD) based on the critical target lipid body burdens 
(CTLBBs) as presented by McGrath & Di Toro [2009]. Taxonomic groups are sbown: pisc: 
fish, crus: crustaceans, alg: algae, ins: insects, amph: amphibians, ann: annelids, moll: 
molluscs, cnid: cnidarians, prot: protozoans. 
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Acute to chronic ratio 
The input for the acute to chronic ratios (ACRs) used in the TLM was critically evaluated. With 
respect to the acute toxicity it is noted that in case real acute effects were not observed in the 
studies, behavioral effects were used instead (e.g. for fluoranthene tested with fathead minnows 
(Pimephales promelas) the EC50 for behavioral effects was 69 µg/L, while the LC50 was > 212 
µg/L. Behavioral effects occur at lower concentrations than the standard acute endpoints such as 
mortality, immobility or population growth and consequently will lead to an underestimation of 
the ACRs. Because these behavioral effects are not considered in the construction of the target 
lipid model, it is not appropriate to use ACR which are derived based on these effects.  

Concerning the chronic toxicity it appears that chronic values (ChV) in stead of NOECs have been 
selected. These ChV are equal to the geometric mean of the NOEC and the LOEC (sometimes also 
denoted as maximum acceptable toxicant concentration (MATC). In general the difference 
between the NOEC and the ChV is the logarithm of the spacing factor (i.e. the factor between two 
consecutive concentrations, which is often a factor of 2 in the chronic studies considered for the 
TLM. Consequently, the used chronic endpoints are mostly slightly too high (√2) leading to an 
underestimation of the ACRs. 

More important is that for several substances considered in the EU RAR on Coal Tar Pitch, high 
temperature (CTPHT) data were available that in several cases lead to much higher ACRs than the 
values reported by McGrath and Di Toro [2009]. In Table 12 only values are considered that were 
evaluated to be reliable and for which acute and chronic data were from the same source and 
performed under the same conditions. 

 

Table 12:  Acute to chronic ratios (ACRs) for polycyclic aromatic compounds. Acute and chronic tests 
are performed under similar conditions and are reported in the same study.  

Species Compound Acute 

EC50 

Chronic 

EC10 

Chronic 

NOEC 

ACR 

(EC50/EC10) 

ACR 

(EC50/NOEC) 

Source 

Champia parvula Naphthalene 1400 810 (<)950 1.70 (>)1.45 Thursby et al., 1985 

Pseudokirchnriella 

subcapitata 

Phenanthrene 233 15.5  15.0  Halling-Sørensen et al.,., 

1996 

Pseudokirchneriella 

subcapitata 

Anthracene 3.9 1.5 1.42 2.6 2.75 Gala & Giesy, 1992 

(growth rate)  6.6 2.5 2.35 2.64 2.81  

  5.3 2.3 <5.03 2.30 >1.05  

  12.1 8.7 5.93 1.39 2.04  

  37.4 7.8 6.2 4.79 6.03  

(primary production)  3.3 1.7 1.36 1.94 2.43  

  5.9 2.7 2.26 2.19 2.61  

  4.9 2.2 <4.87 2.23 >1.01  

  8.1 2.5 5.75 3.24 1.41  

  24.0 3.9 2.81 6.15 8.54  

(number of viable cells)  4.5 1.7  2.65  Gala & Giesy, 1994 

  10.2 4.1  2.49   

  15.8 6.8  2.32   

Scenedesmus 

vacuolatus 

Naphthalene 3800 1700 1200 2.24 3.17 Walter et al., 2002 

Scenedesmus Phenanthrene 590 150  3.93  Altenburger et al., 2004 
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Species Compound Acute 

EC50 

Chronic 

EC10 

Chronic 

NOEC 

ACR 

(EC50/EC10) 

ACR 

(EC50/NOEC) 

Source 

vacuolatus 

Scenedesmus 

vacuolatus  

Pyrene 49 21  2.33  Altenburger et al., 2004 

Scenedesmus 

vacuolatus 

Fluoranthene 34 14  2.33  Altenburger et al., 2004 

  36  13  2.77 Walter et al., 2002 

Scenedesmus 

vacuolatus 

Benz[a]anthracene 14 8.0  1.75  Altenburger et al., 2004 

Acartia tonsa Phenanthrene 422 69 107 6.15 3.94 Bellas & Thor, 2007 

Acartia tonsa Pyrene >129 22 32 >5.96 >3.99 Bellas & Thor, 2007 

  28 1.7 5.1 16.8 5.52  

Acartia tonsa Fluoranthene 120 41 51 2.94 2.38 Bellas & Thor, 2007 

Americamysis bahia Fluoranthene 31  11.1  2.79 Spehar et al., 1999 

  1.4  0.6  2.33 Spehar et al., 1999 

Cancer magister Naphthalene >2000  21  >95.2 Caldwell et al., 1977 

Ceriodaphnia dubia Fluoranthene 45  43  1.05 Oris et al., 1991 

Daphnia magna Fluorene 282  15  18.8 Finger et al., 1985 

Daphnia magna Fluoranthene 117  17  6.88 Spehar et al., 1999 

  105.7  90  1.17 Suedel & Rodgers, 1996 

Eurytemora affinis Naphthalene 3800  <14  >271 Ott et al., 1978 

Hyalella azteca Fluoranthene 183 28  6.54  Schuler et al., 2004 

  92.2  18  5.12 Suedel & Rodgers, 1996 

Paracartia grani Naphthalene 2535 530 ≥130 4.78 ≤19.5 Calbet et al., 2007 

Chironomus riparius Fluorene 1539  142  10.8 Finger et al., 1985 

Chironomus tentans Fluoranthene 208 14.0  14.9  Schuler et al., 2004 

  >250  30  >8.33 Suedel & Rodgers, 1996 

Cyprinodon variegates Acenaphthene 3100 610 520 5.08 5.96 Ward et al.,., 1981 

Lepomis macrochrius Fluorene 525  42  12.5 Finger et al., 1985 

Oncorhynchus mykiss Naphthalene 2100 460 370 4.57 5.68 Moles et al., 1981 

Oncorhynchus 

gorbuscha 

Naphthalene 1200 260 120 4.62 10 Moles & Rice, 1983 

Pimephales promelas Naphthalene 7900  450  17.6 DeGraeve et al., 1982 

Pimephales promelas Acenaphthene 608 289 338 2.10 1.80 Cairns & Nebeker, 1982 

Pimephales promelas Fluoranthene 9.46  <6.2  >1.53 Diamond et al., 1995 

  >212  10.4  >20.4 Spehar et al., 1999 

Rana pipiens Fluoranthene 366  125  2.93 Hatch & Burton Jr, 1998 

Xenopus laevis Fluoranthene 193 30 25 6.43 7.72 Hatch & Burton Jr ,1998 

Values in bold exceed the 95th percentile of 13 used in TLM 
 
 
The target lipid model assumes a geometric mean ACR of 3.83 and a variance in the log ACR of 
0.112 [McGrath & Di Toro, 2009]. These values refer to the distribution of all ACR values 
available, not to species means. However, if geometric species means are calculated first, the 
geometric mean ACR would be virtually the same (3.90), while the variance would be 
substantially lower (0.240, s.d. 0.058). Therefore, the fact that species means were not used is not 
leading to an underestimation of the ACR. In Table 12 it can be seen that for most species the 
geometric mean value is in excess of 5. 
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The assumption that the ACR is log-normally distributed is also subject to discussion. This is 
because the ACR cannot theoretically be lower than one, due the fact that (1) the NOEC is 
supposed to occur at lower concentrations than the EC50, while the EC10 from a dose-response 
relationship is by definition lower than the EC50 and (2) more sensitive endpoints such as 
reproduction that only become manifest after a prolonged period of time, are not affecting the 
acute toxicity endpoint such as lethality. As the ACR can not be below one (apart from some 
scatter in toxicity data), the distribution of the ACR will be skewed at the lower side. For the 
derivation of an HC5 not the lower but the higher end of the distribution of ACRs is of interest. At 
the high end the distribution of the ACR could still be close to a log-normal distribution. For this 
reason, the fact that the ACR is not normally distributed at the lower end of the distribution does 
not necessarily hamper the use of a log-normal distribution, because the upper 5% of the 
distribution is of interest for calculating the chronic HC5. 

In the evaluation of the ACR in the TLM, high ACR values as found for some crustaceans are not 
taken into account. This has resulted in a relatively narrow distribution of the ACR, for which the 
95th percentile is estimated to be around 13. If species geometric means would have been used 
instead of all ACRs as single entries, this 95th percentile would be even lower.  

It is obvious from Table 12 that a relatively high number of ACR values for PAHs show a value in 
excess of 13 (shown in bold). Also for two oil types, large ratios between the EC50 for mortality 
and the EC10 for sublethal endpoints were recorded for toxicity to some benthic species 
[Verbruggen et al 2008]. The geometric mean ACR was 5.73 for the gas oil, which is very similar 
to the data for PAHs listed in Table 12. The standard deviation of the log ACR was 0.65 in this 
case, which is twice as high as that of the relatively narrow distribution used in the target lipid 
model. Similar median ACR values were recorded in other studies [i.e. Ahlers et al., 2006; 
Raimondo et al., 2007].  

Overall, the distribution of ACR values used for petroleum substances in the target lipid model do 
not cover the full range of ACR values which we believe is higher than assumed in the TLM. 
Consequently the chronic toxicity is most likely underestimated.   

Equation used to arrive at an HC5 
Theoretically, the equation to calculate the chronic HC5 is correct, provided that the individual 
parameters for which the uncertainty is accounted for are all independent of each other and are log 
normally distributed. It should be noted that the extrapolation constant (see below) from 
Aldenberg and Slob [1993] used the log logistic distribution instead of the log normal distribution, 
although the differences between these two distributions are small. 

However, a remark could be made to how the uncertainty in the regression analysis of the CTLBB 
and the universal slope is taken into account. The CTLBB is the species specific intercept of the 
regression between the logarithms of EC50s and Kow. The intercept and the slope of a linear 
regression equation are however not independent parameters, which is one of the most important 
assumptions to apply this equation. For the intercept, the variance is only based on the variance in 
estimated CTLBBs. However, the variance in the intercept is correlated to the variance of the slope 
as well (i.e. the higher the slope, the lower the intercept). On top of that, the general intercept of 
the relationship between the logarithms of Kmw and Kow is now assumed to be zero but should be 
added to these CTLBBs. This intercept has its own variance and is also not independent of the 
universal slope as well. 
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Further, two of the three parameters used in the equation (slope, CTLBB, and ACR) did not follow 
a normal distribution. It appeared that the SSD on the CTLBB did not follow a normal distribution 
as expected, and the ACR should not be normally distributed based on theoretical considerations, 
although the choice of data for this parameter is probably more influential on the final result. 
Therefore, the requirement that the parameters are normally distributed is not met.  

Choice of the extrapolation constant for the calculation of the HC5 

In the statistical extrapolation method, an extrapolation constant (kZ) is used to determine the 
hazardous concentration to a certain percentage of the species (e.g. HC5). This constant is not a 
single value in all cases, but depends on the number of species for which toxicity data are available 
and the percentage affected species (for each set of number of species and protection level there is 
a separate extrapolation constant). The smaller the number of data, the larger the extrapolation 
constant becomes, resulting in a lower HC5 value. 

For these extrapolation constants (kZ), median values are presented, as well as 5th and 95th 
percentiles for both the log-logistic distribution [Aldenberg & Slob, 1993] and the log-normal 
distribution [Aldenberg & Jaworska, 2000]. In the target lipid model the extrapolation constant for 
the one-sided left (lower) confidence limit of the HC5 has been used. This can be considered as a 
conservative value, because normally not the lower confidence limit is chosen for the HC5 but the 
median estimate. 

The kZ used in the target lipid model is stated to be conservative, because the number that 
determines the kZ for the derivation of the HC5 is the smallest of the number of species in the acute 
species sensitivity distribution and the number of acute-to-chronic ratios [McGrath & Di Toro, 
2009]. However, the latter number is the number of individual tests, which contains several values 
for one species tested with different compounds. It can be argued that in a species sensitivity 
distribution the number of species, for which acute-to-chronic ratios are available, should 
determine the value of kZ and not the number of individual acute-to-chronic ratios. The number of 
individual species is rather low, only eleven species are listed. 

Moreover, the eleven species for which an acute-to-chronic ratio is available do certainly not meet 
the conditions for performing a species sensitivity distribution according to the REACH guidance. 
The set contains two algal, three crustacean, four fish, one insect, and one rotifer species. The set 
misses thus a family in any order of insect or any phylum not already represented and higher 
plants, i.e. two of the eight taxonomic groups that are considered as the minimum requirement to 
perform an SSD according to the REACH guidance. 

At the same time, it should be noted that kZ for the lower confidence limit of 29 species is still 
higher, and thus more conservative, than the kZ for the median estimate of 11 species. For the log-
logistic distribution the kZ for the median estimate in the case of 11 species is 1.72 [Aldenberg & 
Slob, 1993]. For the log-normal distribution, the kZ for the lower confidence limit of 29 species is 
2.232 (interpolated), while the kZ for the median estimate in the case of 11 species is 1.696 
[Aldenberg & Jaworska, 2000]. 

We believe that the dependency of the slope and the CTLBB will have an influence on the outcome of 
the risk assessment. By assuming that these parameters are not correlated, underestimation of the 
chronic toxicity is most likely.  
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3.2.4 Validation of the Target Lipid Model 
 

Validation of the target lipid model for acute toxicity of petroleum hydrocarbons 

McGrath and Di Toro [2009] have performed a cross-validation of the target lipid model with 
acute toxicity data for mono-aromatic compounds and polycyclic aromatic hydrocarbons. 
Although the model predicts the EC50s fairly well, it should be noted that accuracy is within a 
factor of three to five. 

The validity of the target lipid model was also tested with some oil and PAH mixtures. For crude 
oil, at 0.6 toxic units for fathead minnow (Pimephales promelas) already 80% mortality is 
observed, where less than 50% is expected (50% at 1 toxic unit). This 80% mortality is even below 
the lower 5% confidence limit for 1 toxic unit. Therefore, there is a small discrepancy between the 
model and the observed toxicity, although the prediction is still within a factor of 2. Besides that, 
the number of compounds that have been measured is limited and is restricted to mono-aromatic 
and poly-aromatic compounds. The higher toxicity observed could be caused by the presence of 
lower aliphatic hydrocarbons. It can therefore be concluded that the model gives a rather good 
prediction the acute toxicity for weathered and unweathered crude oil. 

In the analysis of Di Toro et al. [2007], the target lipid model is used to predict the toxicity for 
unweathered and weathered oil in water and sediment. Although only parent and alkylated mono-
aromatic and polycyclic aromatic compounds were measured, the toxicity to fathead minnows 
exposed to Alaska North Slope crude oil is accurately predicted. The LC50 is at about 0.7-0.8 
toxic units. Also the observed toxicity to the amphipod Ampelisca abdita exposed to fuel oil no.2 
in sediment corresponds well with toxic unit above or below one. 

Validation of the target lipid model for chronic toxicity of petroleum hydrocarbons 

For mono-aromatic and polycyclic aromatic hydrocarbons, the TLM was tested with chronic data 
as well [McGrath & Di Toro, 2009]. An investigation of typically chronic effects on fish was 
made. Three studies with rainbow trout (Oncorhynchus mykiss) were evaluated by McGrath & Di 
Toro [2009]. The data for eggs and fry (until 4-d post-hatching) of rainbow trout from the study by 
Black et al. [1983] were compared with the predicted chronic endpoints from the TLM for 
rainbow trout. The chronic endpoints from the TLM were 880 µg/L for naphthalene and 70 µg/L 
for phenanthrene, while the experimental 27-d LC50s were 110 and 40 µg/L. In the EU RAR for 
CTPHT the LC10s from this study were also derived. These LC10s were 20 and 28 µg/L for 
naphthalene and phenanthrene, respectively. It can therefore be concluded that for this case the 
TLM does not predict the chronic toxicity well. 

Another study with rainbow trout (Oncorhynhus mykiss) tested with phenanthrene showed effects 
at 500 µg/L [Hawkins et al. 2002], but the use of this study is limited as the concentration was not 
verified, only one concentration was tested and the percentage abnormal larvae was 100%. 
Therefore, this study can not be regarded as being in support of the chronic TLM. It only confirms 
that toxicity indeed occurs once the chronic endpoint is exceeded. 

For benzo[a]pyrene, the chronic endpoint from the TLM was compared with the early life-stage 
(ELS) study with rainbow trout from Hannah et al. [1982]. The chronic endpoint from the TLM 
was 1.9 µg/L for this species and compound, while the LOEC from the experimental study was 
quoted to be 0.21-2.4 µg/L. Actually, from the original study it appears that this should be 0.08 to 
2.4 µg/L (LOEC for mortality >2.99 µg/L), but the lowest LOEC for length is not accompanied by 
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a clear dose response-relationship. The NOEC for abnormalities is 1.48 µg/L. In the EU RAR for 
CTPHT this study was also evaluated where the EC10 for abnormalities of 2.9 µg/L derived. Thus, 
if the data for the endpoint length are considered inconclusive, in this case the TLM seems to be 
sufficiently protective. 

For benzo[k]fluoranthene, the chronic endpoint for the TLM was compared with the early life-
stage (ELS) study with zebrafish (Danio rerio) from Hooftman and Evers-De Ruiter [1992]. The 
chronic endpoint from the TLM was 3.8 µg/L for this species and compound, while the LOEC 
from the experimental study was quoted to be 0.72 µg/L, which is based on nominal 
concentrations. Based on actual concentrations, the lowest NOEC for length was <0.19 µg/L, 
while the NOEC for weight and mortality were 0.35 µg/L. In the EU RAR for CTPHT the EC10 
values for these endpoints were calculated to be 0.17, 0.31, and 0.62 µg/L. Based on these results 
the TLM appears again to underestimate the chronic toxicity. 

For phenanthrene, the chronic endpoint from the TLM was compared with the ELS study with 
Japanese medaka (Oryzias latipes) from Rhodes et al. [2005]. The chronic endpoint from the TLM 
was 135 µg/L for this species and compound, while it was stated that no effects were observed in 
the experimental study up to a concentration of 200 µg/L. The study was considered to be of low 
quality by McGrath & Di Toro [2009], because concentrations were not measured. However, the 
study was performed in bottles with Teflon-lined caps and test solutions were renewed daily. 
Indeed a NOEC could not be derived, but blue-sac disease and percentage normal medaka 
correlated significantly with exposure concentrations. The EC10 for malformations that can be 
derived from the data presented in the study is 93 µg/L. The TLM prediction is therefore in the 
same range. 

Other data are difficult to interpret. For example, the ELS study for retene resulted in an EC50 of 
only two times the chronic endpoint for Japanese medaka (Oryzias latipes) and 85% blue sac 
disease at 3.5 times the chronic endpoint for rainbow trout (Oncorhynchus mykiss) The other data 
for the PAHs that are used in the comparison by McGrath and DiToro [2009] should be considered 
as unreliable, because exposure concentrations were not verified. Nevertheless, the data for the 
inland silverside (Menidia beryllina) tested with naphthalene and fathead minnow (Pimephales 
promelas) tested with benzo[a]pyrene show that the TLM also underestimates the observed 
toxicity. 

In the study by Rhodes et al. [2005] the ELS test for Japanese medaka (Oyzias latipes) was 
performed with a mixture of parent PAHs, a mixture of methylated PAHs and an extract of oil 
sands. The recorded endpoints were blue sac disease score, percentage abnormalities, percentage 
hatching and hatch length. In general the TLM predicted the observed toxicity well, except for 
percentage hatching and hatch length for the oil sand extract, for which the observed toxicity was 
higher than predicted [McGrath and DiToro, 2009]. It has to be added that for this species the 
TLM did predict the toxicity for single PAHs correctly, while the deviations occurred for the other 
species tested (see above: Danio rerio, Oncorhynchus mykiss). 
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Comparison of risk limits derived with data for TPH and PAHs 
The effect of the uncertainties and assumptions described above is difficult to describe 
quantitatively. To give an impression in the differences of several approaches the final HC5 for 
different log Kow fractions is given in Table 13. It appears that there are relatively small differences 
between the 2004 and 2009 version of the target lipid model. As expected the final chronic value 
as presented by Di Toro et al. [2000a] is higher than the HC5 values from the later versions of the 
target lipid model. The difference with the values derived by the methodology presented by 
Verbruggen et al. [2008] is interesting, because toxicity studies with petroleum products as whole 
mixtures were used as a starting point to derive these values. It appears that the difference between 
the values derived by the target lipid model and the method of Verbruggen et al. is a factor 6 to 7.  
 

Table 13.  Overview of final chronic values (FCV) and chronic hazardous concentrations to 5% of the 
species (HC5) 

log Kow Di Toro 2000a 
FCV 

McGrath et al.,  
2004 chronic HC5 

McGrath & Di Toro 
2009 chronic HC5 

Verbruggen et al., 2008 
chronic HC5 

0 6,940 2,620 2650 407
0.5 2,340 881 900 137

1 788 297 306 46.2
1.5 265 99.8 104 15.6

2 89.4 33.6 35.2 5.24
2.5 30.1 11.3 11.9 1.77

3 10.1 3.79 4.05 0.595
3.5 3.42 1.27 1.37 0.200

4 1.15 0.427 0.464 0.0675
4.5 0.388 0.143 0.157 0.0228

5 0.131 0.048 0.053 0.0077
5.5 0.044 0.016 0.018 0.0026

 
These HC5s for petroleum substances were derived based on a limited set of benthic species. 
However, the results were validated with data for the same or similar species but other narcotic 
chemicals and data for aquatic and terrestrial species tested with petroleum substances. The model 
resulted in consistent results with these data it was compared with. Moreover, more recently the 
same methodology was applied to PAHs instead of petroleum products [Verbruggen, 2012] using 
all reliable data from the risk assessment report on coal tar pitch extended with some new data. 
This resulted in a data set for toxicity of PAHs to 54 different species, containing freshwater, 
marine, benthic, and terrestrial species. The data resulted in almost the same HC5 value as for total 
petroleum hydrocarbons (about 25% lower). 

The difference between the data that are presented for PAHs and mono-aromatic compounds by 
McGrath & Di Toro [2009] and the estimates for the same substances [Verbruggen, 2012] 
determined by the methodology by Verbruggen et al. [2008] is in general lower than a factor of 6-
7 and on average less than a factor of 4 (see Figure 33). This is due to the application of the 
chemical class corrections for polycyclic aromatic compounds and mono-aromatic compounds in 
the target lipid model. However, individual differences might become higher due to the use of 
different log Kow in both studies. The log Kow for benzene and toluene calculated by SPARC are 
0.2 to 0.3 units lower than experimental values and ClogP. The HC5 estimated by the target lipid 
model for these substances is therefore a factor of eight higher than the estimates by Verbruggen et 
al. [2008], even though the chemical class correction of 0.778 has been applied in the target lipid 
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model. Larger differences in both directions are also observed for the PAHs with log Kow higher 
than 6 considered in the study by McGrath & Di Toro [2009], with the largest difference for 
indeno[1,2,3-c,d]pyrene, for which log Kow estimated by SPARC is 0.43 unit lower than the 
estimate by ClogP. 

It should be noted that the discrepancy in HC5 values is not due to the methodology applied by 
Verbruggen et al., [2008]. If for data rich substances, such as naphthalene and fluoranthene, the 
HC5 is calculated on basis of chronic toxicity data for these substances, the HC5 is 25 µg/L for 
naphthalene and 0.60 µg/L for fluoranthene. The HC5 for these substances presented by McGrath 
& Di Toro [2009], after application of the chemical class correction, is 132 µg/L for naphthalene 
and 3.17 µg/L for fluoranthene. In both cases the difference between the HC5 directly determined 
from the selected toxicity data and the HC5 estimated by the target lipid model is a factor of 5.3. 
 
Overall, the HC5 estimated by the TLM as implemented in PetroTox is significantly higher than HC5 
values that were directly obtained from chronic toxicity data for PAHs and petroleum products. This 
will lead to a significant and systemic underestimation of the risk of petroleum products. 
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Figure 33.  Acute and chronic toxicity data for PAHs. Only reliable data are shown. Open symbols refer to 
chronic toxicity data, closed symbols are acute toxicity data. Drawn line is the level of the HC5 
based on internal concentrations calculated from the shown chronic toxicity data. Small 
horizontal bars are HC5 for PAHs by McGrath & Di Toro [2009], including chemical class 
correction. 
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3.2.5 Validity of the model for benthic and terrestrial organisms 
In the target lipid model, it is assumed that toxicity to benthic organisms can be calculated by 
means of equilibrium partitioning [Di Toro et al., 2000b]. This assumption seems to be confirmed 
by other data for petroleum products and PAHs. HC5 values for petroleum compounds 
[Verbruggen et al., 2008] were derived from tests with benthic organisms. To validate this 
approach a comparison with aquatic as well as terrestrial toxicity data was made. This resulted in 
the observation that the equilibrium partitioning method was valid to calculate toxicity in the 
different compartments. In a recent evaluation of PAHs [Verbruggen, 2012], it was shown that the 
sensitivity of freshwater, marine, benthic (freshwater and marine) and terrestrial species was 
completely comparable. It can be concluded that equilibrium partitioning can be used to calculate 
the toxicity for benthic and terrestrial species.  
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4 Conclusions. WP3. Uncertainties in the HBM tools  

4.1 Uncertainty in the exposure assessment  

Melting Point 

Although the Melting Point estimation applied in the HBM tool has a relatively large uncertainty 
(R2=0.63, n=10051, standard deviation in the estimates of ~64°C), this uncertainty has very little 
influence on the result of the environmental risk assessment performed with PetroTOX and HBM 
tool. 

Assessment of the quality of the data underlying the Melting Point QSAR model did not show 
additional uncertainty. The experimental Melting Point data used is considered correct. 

Boiling Point 

The boiling point estimates used in the PetroTOX model and the HBM tool are different, the 
PetroTOX tool uses SPARC v4.2 whereas the source of the boiling points used in the HBM tool is 
not documented, but is hypothesized to come from a newer version of the SPARC models. All 
other phys-chem parameters in the HBM tool are estimated using EPA EpiSuite models, and it is 
unclear why for Boiling Point an exception has been created. 

SPARC v4.2, the newer version applied in the HBM tool and the EPISuite model (MPBPVPWin) 
all perform similarly well in reproducing the part of the CONCAWE library for which 
experimental data is available. The difference in estimated boiling points as used in the PetroTox 
model and the HBM tool could lead, in a worst-case scenario, to the allocation of CONCAWE 
library components to different Hydrocarbon Blocks for 13% of the substances, in the Low 
Resolution mode. In the High Resolution mode carbon numbers are used to define the 
Hydrocarbon Blocks, so differences in boiling points will not have any effect. The effect of this 
different allocation in the Low Resolution mode on the RCRs cannot be quantified. 

Water solubility 
PetroTox and the HBM tools apply different QSAR models to estimate the water solubility of the 
CONCAWE library compounds. Both models (SPARC and WSKOW) perform similarly well in 
reproducing the experimental data available for the CONCAWE library compounds. When 
comparing predictions from the two models to each other large variation in the estimates is 
observed. Based on the comparison between the models there is no trend that one model will on 
average give higher or lower water solubility estimates. Similarly, when comparing the models 
with experimental data it cannot be concluded that one model is (statistically significantly) better 
than the other.  

The fact that one water solubility is used to establish a LL50 which will form the basis for 
Classification and Labelling conclusions, and another water solubility is used to perform the 
quantitative Risk Assessment is not consistent. 

Octanol-Water Partition coefficient (Kow)  
PetroTox and the HBM tools apply different QSAR models to estimate log Kow. In this case a 
valid reason for applying the SPARC estimated log Kow values is given by CONCAWE since the 
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whole Target Lipid Model has been fitted using SPARC estimated log Kow values. However, 
there is no reason to use a specific Kow estimate in the HBM tool, and the comparison of the two 
models against the available experimental data for the CONCAWE library does not indicate that 
one model is better than the other. 

The large differences between the SPARC and KOWWIN estimates observed for the CONCAWE 
library (>21% of the library with a difference of > 1 log unit in log Kow) will impact the risk 
assessment directly, as log Kow is influencing the PEC as well as the PNEC. Therefore the 
uncertainty observed in the log Kow estimates seems to be of higher relevance than the 
uncertainties found for e.g. water solubility. It could be argued that since the TLM has been 
calibrated with SPARC estimated log Kow values, these estimates should be used to calculate the 
HC5. However, using a different model to calculate the fate factors does not seem appropriate. 

When comparing the model predictions in the most relevant log Kow range of 2-8 the SPARC 
estimates for aliphatic compound are higher than the estimates from KOWWin. The average factor 
for all aliphatics in the CONCAWE library is KOWWIN = 0.86 x SPARC, i.e. 14%. For the 
aromatics the difference between the models is much less (<5% difference). 

As the Koc value is derived directly from the Kow value the KOWWIN estimate would result in 
lower sorption. When emitted via an STP a larger fraction of the HPC will remain in water, when 
compared to the SPARC estimate. Consequently the PEC in surface water might become higher. 
This higher PEC in surface water could be counteracted a possible overestimation of the 
(bio)degradation rate in an STP. As discussed in section 3.1 on biodegradation, the biodegradation 
rates for STP could be overestimated (by a factor of 10 when compared to the default setting of the 
REACH guidance). This would possibly result in even lower environmental concentrations. 

Since petroleum products will have a very diverse composition, with mixtures of aliphatics and 
aromatics, it is within the scope of this evaluation not possible to quantify what the exact effects 
(under- or over-estimation of the RCRs) will be within the scope of this evaluation. 

 

Water-air partitioning coefficient, Henry’s Law Constant 

PetroTox and the HBM tools apply different QSAR models to estimate the Henry’s Law Constant 
of the CONCAWE library compounds. Both models (SPARC and HenryWin) perform similarly 
well in reproducing the experimental data available for the CONCAWE library compounds. When 
comparing predictions from the two models to each other large variation in the estimates is 
observed. 

In general the estimations from HenryWin seem to be higher than the estimates from SPARC. A 
higher HLC would imply higher partitioning to air, which in an STP would lead to lower effluent 
concentrations, and lower soil concentrations (via the application of sludge to agricultural soil). In 
addition, for some substances this will also increase the biomagnification potential in air breathing 
organisms. In that respect the HBM tool, in applying the HenryWin model is less conservative 
compared to using the SPARC estimate for the HLC. 

 
Biodegradation and adsorption 

In section 3.1, several uncertainties in the estimation of the degradation rate in different 
environmental compartments and sewage treatment plant have been identified. The BIOHCWIN 
model developed to estimate the half lives in surface water seems to under-predict the degradation 
half lives of short chain alkanes and branched alkanes, though, for the other group of compounds 
the model seems to be sufficiently conservative when compared to recently measured data 
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provided by CONCAWE [Princen, 2008, 2009; CONCAWE 2010]. The extrapolation to soil and 
sediment is however not well founded and simply based on the proposed ratio made in a study of 
Boethling et al. [1995] in which only a few petroleum compounds were present. In a conservative 
approach, the ratios used in the REACH guidance to predict the half lives in water, soil and 
sediment based on the ready biodegradability test is at present recommended.  

As explained in section 3.1, the method used to estimated the half lives in an STP is not well 
founded. Most critical, is that the estimation of the half lives in a STP based on the half lives 
estimated in water is based on only a limited number of components. For several important classes 
which are expected to be present in a large number of petroleum products, like the linear and 
branched alkanes, no information was available. We believe that more experimental data are 
needed for several classes of petroleum components to have a broader coverage of the petroleum 
compounds and to build more confidence in the validity of the calculation method. At present 
there is a possibility that the fraction degraded in an STP will be over-predicted and therefore the 
environmental concentrations might be too low.  

Based on the default residence time of 4 h in EUSES at which biodegradation in a STP will occur, 
only a half life of < 55 h will significantly impact on the PECs. With that half-life taken as a cut-
off, the calculated ratio between the degradation rate in surface water and an STP is 180 or more. 
This is much more than the default ratio of 21 used in REACH guidance for cases where the 
degradation rate is estimated based on the results of a ready biodegradability study.  

In Table 14 it is illustrated to which extent the distribution in an STP and PEC sludge, surface 
water and soil will differ when the half lives are estimated based on the ratio 1 : 21 between 
surface water and an STP instead of the half lives based on the equation used in the HBM model. 
In addition we have calculated the PECs based on half live ratio in soil versus surface water of 2, 
as proposed by the REACH guidance, instead of 1 as used in the HBM. We also made PEC 
calculations for two aromatics compounds using a Koc value based on the equation proposed by 
Karichoff [1979] instead of a Koc value based on the equation of Sabljic [1995] as used in the 
HBM. 

Based on this analysis, it is obvious that the degradation half life in an STP is most critical for 
estimation the local PEC surface water. Depending on the adsorption capacity of the substance the 
PEC surface water can be up to four times higher using the default setting of the REACH 
guidance. The PEC soil will be around 2 times higher using a half life in soil twice of that in 
surface water. If a Koc value is used based on Karickoff [1979] for aromatics the PEC soil can be 
up to a factor of 4 higher.  

BCF in fish (biota-water partitioning coefficient) 
Based on our analysis of the BCF model values used in the HBM tool it can be concluded that by 
using BCFWin v2.16 estimates for the BCF in the HBM tool bioconcentration will be 
underestimated. A more conservative estimate (e.g BCFBAF v3.00 model estimates) would be 
recommendable. This optimistic estimate of the bioconcentration factor will give significant 
underestimation of the risk for secondary poisoning and man indirectly exposed via the 
environment. 
 
Biomagnification 
On the basis of the analysis the HBM method is found to correctly take into account the extra 
concern for biomagnification, in accordance with REACH Guidance. For a small subset of the 
CONCAWE library, those substances which have a high Koa but relatively low Kow, there might 
be an underestimation of their potential to bioaccumulate in higher, air breathing organisms. This 
subset consists of 16 substances (on a total of 1512) and concerns mainly PAHs. 
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Table 14 EUSES v2.3 distribution and PEC calculations for a number of illustrative hydrocarbon substances 

 Distribution in STP PECsludge 

mg/kg 

PEC sw 

µg/kg  

PEC soil 

µg/kg 

 % to air % to water % to sludge % deg    

n-octane        

HBM:  

Kow: 5.18, Koc: 19800 

½T STP: 0.84 h 

½T soil/water: 6.4d 

0.16 8.37 53.4 38.1 10.1 0.06 4.4 

½T STP: 7.3 h 0.36 24.2 62.4 13 11.8 0.176 5.1 

½T soil: 12.8d 0.36 24.2 62.4 13 11.8 0.176 8.6 

        

2-methylundecane        

HBM:  

Kow: 6.16, Koc: 123000  

½T STP: 1.5 h 

½T soil/water: 11 d 

0.32 8.9 79.3 11.5 15.1 0.056 9.9 

½T STP: 12.7 h 0.44 12.2 85.4 1.95 16.2 0.078 10.7 

½T soil: 22 d 0.44 12.2 85.4 1.95 16.2 0.078 15.4 

        

2,3-dimethylhepatane        

HBM:  

Kow: 4.61, Koc: 6830  

½T STP: 1 h 

½T soil/water: 7.6d 

0.5 11.9 34.7 52.9 6.59 0.088 3.3 

½T STP: 8.9 h 1.25 38.6 40.7 19.5 7.72 0.29 3.9 

½T soil: 15.2 d 1.25 38.6 40.7 19.5 7.72 0.29 6.1 

        

1-methyl-3 ethylbenzene        

HBM:  

Kow: 3.98, Koc: 2110  

½T STP: 0.63 h 

½T soil: 4.9 d 

0.001 10.1 15.5 74.4 3.0 0.073 1.0 

½T STP: 5.6 h 0.001 44.7 18 37.3 3.4 0.33 1.17 

Koc: 5888 0.001 35.3 36.4 28.3 6.9 0.26 2.36 

½T soil/water: 22 d 0.001 35.3 36.4 28.3 6.9 0.26 4.2 

        

1-Phenyl-5-iso-

propylnaphthalene  

       

HBM:  

Kow: 6.39, Koc: 189000 

½T STP: 2.3 h 

½T soil/water: 16d 

0 9.44 84.4 6.1 16 0.055 13.2 

½T STP: 18.3 h 0 11.1 88 0.9 17 0.064 13.7 

½T soil: 32 d 0 11.1 88 0.9 17 0.064 18.1 

Koc: 1513561 0 8.4 91.5 0.1 17 0.019 18.8 
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4.2 Uncertainty in the effect assessment  

 
Validation of the target lipid model: 

The evaluation presented in Chapter 3 reveals some weaknesses of the target lipid model. The 
subjects identified, in arbitrary order, are the assumption of a normal distribution, which was not 
met for log CTLBB and log ACR, the assumption of independent parameters, which was not met 
for the combination of CTLBB and the universal slope for narcosis, and the numerical values used 
for the ACR, including the use of chronic values instead of NOECs.  

It is difficult to assess what the influence is of each of these parameters individually. However, the 
final outcome for the HC5 of baseline narcotic chemicals is a factor of 7 lower than HC5 values 
based on chronic toxicity for petroleum products. Even after chemical class correction for the 
PAHs has been applied, the HC5 is on average a factor of 3-5 higher than would be derived from 
chronic toxicity data for PAHs. 

 

Application of an additional assessment factor 

In addition to the final value for the HC5 the REACH guidance requires an assessment factor 
varying from one to five applied to the median estimate of the HC5. In the following evaluation, 
only the data underlying the target lipid model are taken into account. If the HC5 would be based 
on other data, this would result in a different evaluation of the points influencing the assessment 
factor on the HC5. 

 The endpoints from most of the studies used should be considered as true chronic endpoints, 
but are not necessarily the most sensitive endpoints. Some studies are not readily available 
and therefore, the relevance of the study remains unknown. However, the endpoints 
considered in the ACRs are not NOECs but chronic values (ChVs) and can thus not be 
considered as true chronic NOECs. Therefore, the set of ACRs from the target lipid model 
should not be used as it is done now, because it does not represent the ratio of chronic NOECs 
(or EC10s) to acute EC50s. The magnitude difference between chronic values and NOECs is 
at least 1.4. In our view, the most logic step would be to recalculate the ACRs with NOECs in 
stead of chronic values. Alternatively, an additional AF could be considered.  

 The minimum requirement for the number of species (10) is amply exceeded by the number 
of CTLBBs (47), but marginally by the number of ACRs (11). The required eight taxonomic 
groups are not met by the set of CTLBBs as well as the set of ACRs. In both sets higher 
plants are lacking. Apart from that, the set of ACRs misses also a family in any order of insect 
or any phylum not already represented. This rather limited data set, especially for the ACR, 
would imply the use of an assessment factor higher than one. 

 The assumed mode of toxic action is narcosis. Although the mechanism of chronic toxicity 
could be different, the assumption to base the toxicity on internal target lipid concentrations 
seems justified. However, it appears that phototoxicity of PAHs is a very toxic acute effect, 
with effect concentrations (EC50s) at similar levels as the lowest chronic NOECs. For PAHs 
this will be a reason to increase the assessment factor, possibly even to the maximum value of 
5. Although phototoxicity in petroleum products as a whole will not be as extreme as for 
some of the individual PAHs, the occurrence of phototoxicity for petroleum products has been 
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demonstrated. In the target lipid model phototoxic effects were not considered at all. 
Therefore, the potential of petroleum products, especially those with higher amounts of 
PAHs, to exert phototoxicity would imply the use of an assessment factor higher than 1.  

 The CTLBBs and the ACRs are not fulfilling the requirement of a log normal distribution. 
Although the effect cannot be quantified, it increases the uncertainty in the HC5 estimate. 
However, the deviation from normality for these parameters does not seem to lead to an 
overestimation of the relevant lower and upper 5th percentiles, for CTLBB and ACR,  
respectively. More relevant to the uncertainty is the way in which the distribution of the 
CTLBB and ACR together with the universal slope for narcosis are combined to calculcate a 
chronic ACR. Apart from the assumption of normal distributions, this calculation requires the 
individual parameters to be independent of each other. For the CTLBBs and the universal 
slope for narcosis this requirement is certainly not met. This hampers the validity and 
applicability of the equation to arrive at a chronic HC5. In principle this would imply that the 
HC5 derivation has to be improved by taking into account the correlation between slope and 
CTLBBs.  

- The HC5 is QSAR based and is therefore difficult to compare with field data for example. 
The model has been compared with a limited number of chronic toxicity studies with 
petroleum compounds. The results of this exercise were rather inconclusive. This would also 
lead to the use of an assessment factor higher than 1.  

In the target lipid model, an extrapolation constant has been chosen that corresponds to the 5% 
lower confidence limit of the HC5. Normally, the median estimate will be used and therefore, the 
applied kz can be considered to be conservative. Nevertheless, kz should match the number of 
species available. At present the total number of ACRs is determining the assessment factor and 
not the number of species for which an assessment factor is available. Nevertheless, the median kz 
for 11 (species) is lower than the lower confidence kz for 29 (ACRs). The chosen kz in itself can be 
considered as conservative. Still, the chronic HC5 levels are higher than HC5 values derived 
directly from experimental data for individual substances and HC5 values derived in a comparable 
way from chronic toxicity data for PAHs and petroleum products. The main reasons for this 
discrepancy are most likely the selection of ACRs and the dependency of the parameters CTLBB 
and universal slope for narcosis. Before application of the model for risk assessment purposes, 
these aspects need some reconsideration.  

In view of the shortcoming with respect to the assumption made for normal distribution, 
independent parameters and the numerical values, it is in our view desirable to improve the model. 
After this has been completed an assessment factor to the HC5 should be chosen which addresses 
the remaining uncertainties described above.  
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